Skip to main content

Probabilistic Discriminative Dimensionality Reduction for Pose-Based Action Recognition

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 318))

Abstract

We examine the problem of classifying action sequences given a small set of examples for each type of action. Based on the presumption that human motion resides in a low dimensional space, we introduce a probabilistic dimensionality reduction model able to recover the structure of a low-dimensional manifold where all the involved actions reside. Requiring that sequences of the same action are placed apart from other sequences, we are able to achieve higher classification rates, with respect to other commonly used techniques, by performing the classification on this manifold. The main contribution is the introduction of a new model, based on Back-constrained GP-LVM which can be used for the efficient classification of sequences. We compare our method with the classification based on the Dynamic Time Warping distance and with the V-GPDS model, adapted for classification. Results are provided for sequences taken from two publicly available datasets which highlight different aspects of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)

    Article  Google Scholar 

  2. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition  with support vector machines-a kernel approach. In: International Workshop on Frontiers in  Handwriting Recognition, pp. 49–54 (2002)

    Google Scholar 

  3. Baisero, A., Pokorny, F.T., Kragic, D., Ek, C.H.: The path kernel. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods (2013)

    Google Scholar 

  4. CMU: Carnegie-mellon mocap database, http://mocap.cs.cmu.edu/  (2003)

  5. Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A kernel for time series based on  global alignments. Comput. Res. Repos. (2006)

    Google Scholar 

  6. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational gaussian process  dynamical systems. In: Neural Information Processing Systems Conference, pp. 2510–2518 (2011)

    Google Scholar 

  7. Gong, D., Medioni, G.: Dynamic manifold warping for view invariant action recognition. In: International Conference on Computer Vision (2011)

    Google Scholar 

  8. Härdle, W., Simar, W.: Applied Multivariate Statistical Analysis. Springer, New York (2003)

    Book  MATH  Google Scholar 

  9. Lawrence, N.D.: Gaussian process latent variable models for visualisation  of high dimensional data. In: Neural Information Processing Systems Conference (2003)

    Google Scholar 

  10. Lawrence, N.D., Candela, J.Q.: Local distance preservation in the gp-lvm  through back constraints. In: International Conference on Machine learning, pp. 513–520 (2006)

    Google Scholar 

  11. Li, Y., Fermüller, C., Aloimonos, Y., Ji, H.: Learning shift-invariant sparse  representation of actions. In: International Conference on Computer Vision and Pattern Recognition,  pp. 2630–2637 (2010)

    Google Scholar 

  12. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)

    Article  Google Scholar 

  13. Mordohai, P., Medioni, G.G.: Dimensionality estimation, manifold learning and function approximation using tensor voting. J. Mach. Learn. Res. 11, 411–450 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Müller, M.: Information Retrieval for Music and Motion. Springer, Heidelberg (2007)

    Google Scholar 

  15. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of  motion capture data. In: SIGGRAPH, pp. 677–685 (2005)

    Google Scholar 

  16. Muller, M., Roder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation mocap database hdm05. Technical report CG-2007-2, Universität Bonn (2007)

    Google Scholar 

  17. Ntouskos, V., Papadakis, P., Pirri, F.: A comprehensive analysis of human  motion capture data for action recognition. In: Proceedings of the International Conference on  Computer Vision Theory and Applications, pp. 647–652 (2012)

    Google Scholar 

  18. Poggio, T.: Early vision: from computational structure to algorithms and parallel hardware. Comput. Vis. Graph. Image Process. 31(2), 139–155 (1985)

    Article  Google Scholar 

  19. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. Adaptive Computation and Machine Learning. MIT, Cambridge (2006)

    Google Scholar 

  20. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  21. Sheikh, Y., Sheikh, M., Shah, M.: Exploring the space of a human action. Int. Conf. Comput. Vis. 1, 144–149 (2005)

    Google Scholar 

  22. Shimodaira, H., Noma, K., Nakai, M., Sagayama, S.: Dynamic time-alignment kernel in support vector machine. Neural Inf. Process. Syst. Conf. 2, 921–928 (2001)

    Google Scholar 

  23. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: Neural Information Processing Systems Conference, pp. 1345–1352 (2006)

    Google Scholar 

  24. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science (2000)

    Google Scholar 

  25. Titsias, M.K., Lawrence, N.D.: Bayesian gaussian process latent variable model. J. Mach. Learn. Res. Proc. Track 9, 844–851 (2010)

    Google Scholar 

  26. Turaga, P.K., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  27. Urtasun, R., Darrell, T.: Discriminative gaussian process latent variable  model for classification. In: International Conference on Machine Learning, pp. 927–934 (2007)

    Google Scholar 

  28. Urtasun, R., Fleet, D.J., Fua, P.: 3d people tracking with gaussian process  dynamical models. In: International Conference on Computer Vision and Pattern Recognition, pp. 238–245 (2006)

    Google Scholar 

  29. Urtasun, R., Fleet, D.J., Geiger, A., Popovic, J., Darrell, T., Lawrence, N.D.:  Topologically-constrained latent variable models. In: International Conference on Machine Learning,  pp. 1080–1087 (2008)

    Google Scholar 

  30. Waltisberg, D., Yao, A., Gall, J., Van Gool, L.: Variations of a hough-voting  action recognition system. In: International conference on Pattern Recognition, pp. 306–312 (2010)

    Google Scholar 

  31. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. Neural Inf. Proc. Syst. Conf. 18, 1441–1448 (2006)

    Google Scholar 

  32. Yao, A., Gall, J., Fanelli, G., Gool, L.V.: Does human action recognition benefit  from pose estimation? In: British Machine Vision Conference, pp. 67.1–67.11 (2011)

    Google Scholar 

  33. Yao, A., Gall, J., Gool, L.J.V.: A hough transform-based voting framework for  action recognition. In: International Conference on Computer Vision and Pattern Recognition, pp. 2061–2068 (2010)

    Google Scholar 

  34. Zhang, X., Fan, G.: Joint gait-pose manifold for video-based human motion estimation. In: European Conference on Computer Vision, pp. 47–54 (2011)

    Google Scholar 

Download references

Acknowledgments

This paper describes research done under the EU-FP7 ICT 247870 NIFTi project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valsamis Ntouskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ntouskos, V., Papadakis, P., Pirri, F. (2015). Probabilistic Discriminative Dimensionality Reduction for Pose-Based Action Recognition. In: Fred, A., De Marsico, M. (eds) Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-12610-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12610-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12609-8

  • Online ISBN: 978-3-319-12610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics