Skip to main content

Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 436))

Abstract

Probabilistic topic modeling of text collections is a powerful tool for statistical text analysis. In this tutorial we introduce a novel non-Bayesian approach, called Additive Regularization of Topic Models. ARTM is free of redundant probabilistic assumptions and provides a simple inference for many combined and multi-objective topic models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  MathSciNet  Google Scholar 

  2. Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for multi-label document classification. Mach. Learn. 88(1–2), 157–208 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daud, A., Li, J., Zhou, L., Muhammad, F.: Knowledge discovery through directed probabilistic topic models: a survey. Front. Comput. Sci. China 4(2), 280–301 (2010)

    Article  Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Shashanka, M., Raj, B., Smaragdis, P.: Sparse overcomplete latent variable decomposition of counts data. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, NIPS-2007, pp. 1313–1320. MIT Press, Cambridge (2008)

    Google Scholar 

  6. Wang, C., Blei, D.M.: Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) NIPS, pp. 1982–1989. Curran Associates Inc., New York (2009)

    Google Scholar 

  7. Eisenstein, J., Ahmed, A., Xing, E.P.: Sparse additive generative models of text. In: ICML’11, pp. 1041–1048 (2011)

    Google Scholar 

  8. Larsson, M.O., Ugander, J.: A concave regularization technique for sparse mixture models. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 24, pp. 1890–1898 (2011)

    Google Scholar 

  9. Chien, J.T., Chang, Y.L.: Bayesian sparse topic model. J. Signal Process. Syst., 1–15 (2013)

    Google Scholar 

  10. Khalifa, O., Corne, D.W., Chantler, M., Halley, F.: Multi-objective topic modeling. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 51–65. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Vorontsov, K.V.: Additive regularization for topic models of text collections. Doklady Math. 88(3) (to appear, 2014)

    Google Scholar 

  12. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM, New York (1999)

    Google Scholar 

  13. Wang, Y.: Distributed Gibbs sampling of latent dirichlet allocation: The gritty details (2008)

    Google Scholar 

  14. Teh, Y.W., Newman, D., Welling, M.: A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In: NIPS, pp. 1353–1360 (2006)

    Google Scholar 

  15. Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for topic models. In: Proceedings of the International Conference on Uncertainty in Artificial Intelligence, pp. 27–34 (2009)

    Google Scholar 

  16. Varadarajan, J., Emonet, R., Odobez, J.M.: A sparsity constraint for topic models – application to temporal activity mining. In: NIPS-2010 Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions (2010)

    Google Scholar 

  17. Chemudugunta, C., Smyth, P., Steyvers, M.: Modeling general and specific aspects of documents with a probabilistic topic model, vol. 19, pp. 241–248. MIT Press (2007)

    Google Scholar 

  18. Potapenko, A., Vorontsov, K.: Robust PLSA performs better than LDA. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 784–787. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), 7:1–7:30 (2010)

    Article  MathSciNet  Google Scholar 

  21. Tan, Y., Ou, Z.: Topic-weak-correlated latent dirichlet allocation. In: 7th International Symposium Chinese Spoken Language Processing (ISCSLP), pp. 224–228 (2010)

    Google Scholar 

  22. Dietz, L., Bickel, S., Scheffer, T.: Unsupervised prediction of citation influences. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 233–240. ACM, New York (2007)

    Google Scholar 

  23. Newman, D., Noh, Y., Talley, E., Karimi, S., Baldwin, T.: Evaluating topic models for digital libraries. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, JCDL ’10, pp. 215–224. ACM, New York (2010)

    Google Scholar 

  24. Newman, D., Bonilla, E.V., Buntine, W.L.: Improving topic coherence with regularized topic models. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 24, pp. 496–504 (2011)

    Google Scholar 

  25. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pp. 262–272. Association for Computational Linguistics, Stroudsburg (2011)

    Google Scholar 

  26. Zhou, S., Li, K., Liu, Y.: Text categorization based on topic model. Int. J. Comput. Intell. Syst. 2(4), 398–409 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp. 487–494. AUAI Press, Arlington (2004)

    Google Scholar 

  28. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., Tong, X.: TextFlow: towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011)

    Article  Google Scholar 

  29. Kataria, S., Mitra, P., Caragea, C., Giles, C.L.: Context sensitive topic models for author influence in document networks. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 3, pp. 2274–2280. AAAI Press (2011)

    Google Scholar 

  30. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456. ACM, New York (2011)

    Google Scholar 

  31. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Google Scholar 

  32. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT ’10, pp. 100–108. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  33. McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering (1996). http://www.cs.cmu.edu/~mccallum/bow

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research grants 14-07-00847, 14-07-00908. We thank Alexander Frey for his help and valuable discussion, and Vitaly Glushachenkov for his experimental work on model data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Vorontsov .

Editor information

Editors and Affiliations

Appendices

A The Karush–Kuhn–Tucker (KKT) Conditions

Consider the following nonlinear optimization problem:

$$ f(x) \rightarrow \max _x; \qquad g_i(x) \ge 0, i=1,\dots , m; \qquad h_j(x) = 0, j=1,\dots , k. $$

Suppose that the objective function \({f:\mathbb {R}^n \rightarrow \mathbb {R}}\) and the constraint functions \({g_i:\mathbb {R}^n \rightarrow \mathbb {R}}\) and \({h_j:\mathbb {R}^n \rightarrow \mathbb {R}}\) are continuously differentiable at a point \(x^{*}\). If \(x^{*}\) is a local maximum that satisfies some regularity conditions (which are always true if \(g_i\) and \(h_j\) are linear functions), then there exist constants \(\mu _i\), \({i = 1,\ldots ,m}\) and \(\lambda _j\), \({j = 1,\ldots ,k}\), called KKT multipliers, such that

$$\begin{aligned}&\frac{\partial }{\partial x} \biggl (f(x) + \sum _{i=1}^m \mu _i g_i(x) + \sum _{j=1}^k \lambda _j g_j(x) \biggr )=0;&\text { (stationarity)}\\&g_i(x) \ge 0; h_j(x) = 0;&\text { (primal feasibility)}\\&\mu _i \ge 0;&\text { (dual feasibility)}\\&\mu _ig_i(x) = 0.&\text { (complementary slackness)} \end{aligned}$$

B The Kullback–Leibler Divergence

The Kullback–Leibler divergence or relative entropy is a non-symmetric measure of the difference between probability distributions \({P = (p_i)_{i=1}^n}\) and \({Q = (q_i)_{i=1}^n}\):

$$ \mathop {\text {KL}}\nolimits (P \Vert Q) \equiv \mathop {\text {KL}}\nolimits _i(p_i \Vert q_i) = \sum _{i=1}^n p_i \ln \frac{p_i}{q_i}. $$

From the informational point of view, \(\mathop {\text {KL}}\nolimits (P \Vert Q)\) is a measure of the information lost when \(Q\) is used to approximate \(P\). KL-divergence measures the expected number of extra bits required to code samples from \(P\) when using a code based on \(Q\), rather than using a code based on \(P\). Typically \(P\) represents the empirical distribution of data, \(Q\) represents a model or approximation of \(P\).

The KL-divergence is always non-negative.

\({\mathop {\text {KL}}\nolimits (P \Vert Q) = 0}\) if and only if \({P=Q}\).

The KL-divergence minimization is equivalent to the likelihood maximization of a model distribution \(Q(\alpha )\) over parameter vector \(\alpha \):

$$ \mathop {\text {KL}}\nolimits (P \Vert Q(\alpha )) = \sum _{i=1}^n p_i \ln \frac{p_i}{q_i(\alpha )} \rightarrow \min _\alpha \quad \Longleftrightarrow \quad \sum _{i=1}^n p_i \ln q_i(\alpha ) \rightarrow \max _\alpha . $$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vorontsov, K., Potapenko, A. (2014). Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization. In: Ignatov, D., Khachay, M., Panchenko, A., Konstantinova, N., Yavorsky, R. (eds) Analysis of Images, Social Networks and Texts. AIST 2014. Communications in Computer and Information Science, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-319-12580-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12580-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12579-4

  • Online ISBN: 978-3-319-12580-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics