Skip to main content

Wavelet Frames to Optimally Learn Functions on Diffusion Measure Spaces

  • Conference paper
Current Trends in Analysis and Its Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

  • 1167 Accesses

Abstract

Based on the theory of wavelets on data defined manifolds we study the Kolmogorov metric entropy and related measures of complexity of certain function spaces. We also develop constructive algorithms to represent those functions within a prescribed accuracy that is asymptotically optimal up to a logarithmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.K. Chui, H.N. Mhaskar, Smooth function extension based on high dimensional unstructured data. Math. Comput. 83, 2865–2891 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ehler, F. Filbir, Metric entropy and n-widths of function spaces on data defined manifolds and quasi-metric measure spaces (2013). arXiv:1311.1393

  3. M. Ehler, F. Filbir, ε-coverings of Hölder–Zygmund type spaces on data-defined manifolds. Abstr. Appl. Anal. 2014, 402918 (2014). doi:10.1155/2014/402918

    Article  MathSciNet  Google Scholar 

  4. A.N. Kolmogorov, Über die beste annäherung von funktionen einer gegebenen funktionenklasse. Ann. Math. 37, 107–111 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  5. A.N. Kolmogorov, V.M. Tihomirov, ε-entropy and ε-capacity of sets in function spaces. Usp. Mat. Nauk 14, 3–86 (1959). English transl. in Transl. Am. Math. Soc. 17, 277–364. MR0112032 (22:2890)

    MATH  MathSciNet  Google Scholar 

  6. H.N. Mhaskar, On the representation of smooth functions on the sphere using finitely many bits. Appl. Comput. Harmon. Anal. 18(3), 215–233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Pinkus, n-Widths in Approximation Theory (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  8. A. Pinkus, n-widths of Sobolev spaces in L p. Constr. Approx. 1, 15–62 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. A.G. Vitushkin, Theory of the Transmission and Processing of Information (Pergamon, Elmsford, 1961)

    MATH  Google Scholar 

Download references

Acknowledgements

M.E. has been funded by the Vienna Science and Technology Fund (WWTF) through project VRG12-009. The authors also thank H.N. Mhaskar for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ehler, M., Filbir, F. (2015). Wavelet Frames to Optimally Learn Functions on Diffusion Measure Spaces. In: Mityushev, V., Ruzhansky, M. (eds) Current Trends in Analysis and Its Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-12577-0_78

Download citation

Publish with us

Policies and ethics