Skip to main content

Smooth Solution of an Initial Value Problem for a Mixed-Type Differential Difference Equation

  • Conference paper
Current Trends in Analysis and Its Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

In this paper, we show the construction of the solution to the mixed type differential difference equation:

$$\begin{aligned} x'(t)= A x(t+ a)+ Bx(t-a)+Cx(t), \end{aligned}$$

where \(A,B,C\in\mathbb{C}\setminus\{0\}\), a>0 and \(t \in\mathbb{R}\). We use a step derivative method and a certain condition on the initial function φC [−a,a] to assure the existence, uniqueness and smoothness of the solution in \(\mathbb{R}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Abell, C. Elmer, A. Humphries, E. Vleck, Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Syst. 4(3), 755–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Bellman, K.L. Cooke, Differential-Difference Equations. A Series of Monographs and Textbooks (Academic Press, San Diego, 1963)

    MATH  Google Scholar 

  3. A. Buica, V.A. Ilea, Periodic solutions for functional differential equations of mixed type. J. Math. Anal. Appl. 330, 576–583 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Buksman, J. De Luca, Two-degree-of-freedom Hamiltonian for the time-symmetric two-body problem of the relativistic action-at-a-distance electrodynamics. Phys. Rev. E 67, 026219 (2003)

    Article  MathSciNet  Google Scholar 

  5. H. Chi, J. Bell, B. Hassard, Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 24, 583–601 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. N.J. Ford, P.M. Lumb, Mixed-type functional differential equations: a numerical approach. J. Comput. Appl. Math. 229(2), 471–479 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Harterich, B. Sandstede, A. Scheel, Exponential Dichotomies for Linear Nonautonomous Functional Differential Equations of Mixed-Type, vol. 51 (Indiana University, Bloomington, 2002), pp. 94–101

    Google Scholar 

  8. V. Iakovleva, C.J. Vanegas, On the solution of differential equations with delayed and advanced arguments. Electron. J. Differ. Equ. 13, 57–63 (2005)

    MathSciNet  Google Scholar 

  9. V. Iakovleva, C.J. Vanegas, Spectral analysis of the semigroup associated to a mixed functional differential equation. Int. J. Pure Appl. Math. 72(4), 491–499 (2011)

    MATH  MathSciNet  Google Scholar 

  10. V. Iakovleva, R. Manzanilla, L.G. Mármol, C.J. Vanegas, Solutions and constrained-null controllability for a differential-difference equation. Math. Slovaca (2013). To appear

    Google Scholar 

  11. A. Kaddar, H. Talibi Alaoui, Fluctuations in a mixed IS-LM business cycle model. Electron. J. Differ. Equ. 134, 1–9 (2008)

    MathSciNet  Google Scholar 

  12. J. Mallet-Paret, S.M. Verduyn Lunel, Mixed-type functional differential equations, holomorphic factorization and applications, in Proc. of Equadiff 2003, Inter. Conf. on Diff. Equations. HASSELT 2003 (World Scientific, Singapore, 2005), pp. 73–89

    Google Scholar 

  13. R. Manzanilla, L.G. Mármol, C.J. Vanegas, On the controllability of a differential equation with delayed and advanced arguments. Abstr. Appl. Anal. (2010). doi:10.1155/2010/307409

    MATH  Google Scholar 

  14. A. Rustichini, Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1(2), 121–143 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Rustichini, Hopf bifurcation of functional differential equations of mixed type. J. Dyn. Differ. Equ. 1(2), 145–177 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Iakovleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Iakovleva, V., Vanegas, J. (2015). Smooth Solution of an Initial Value Problem for a Mixed-Type Differential Difference Equation. In: Mityushev, V., Ruzhansky, M. (eds) Current Trends in Analysis and Its Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-12577-0_70

Download citation

Publish with us

Policies and ethics