Skip to main content

Ergodic Theory, Boole Type Transformations, Dynamical Systems Theory

  • Conference paper
Current Trends in Analysis and Its Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

The arithmetic properties of generalized one-dimensional ergodic Boole type transformations are studied in the framework of the operator-theoretic approach. Some invariant measure statements and ergodicity conjectures concerning generalized multi-dimensional Boole-type transformations are formulated.

Supported by 110T558-project of TUBITAK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aaronson, Ergodic theory for inner functions of the upper half plane. Ann. Inst. Henri Poincaré BXIV, 233–253 (1978)

    MathSciNet  Google Scholar 

  2. J. Aaronson, A remark on this existence of inner functions. J. LMS 23, 469–474 (1981)

    MATH  MathSciNet  Google Scholar 

  3. J. Aaronson, The eigenvalues of nonsingular transformations. Isr. J. Math. 45, 297–312 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Aaronson, An Introduction to Infinite Ergodic Theory, vol. 50 (AMS, Providence, 1997)

    MATH  Google Scholar 

  5. R. Adler, B. Weiss, The ergodic, infinite measure preserving transformation of Bool. Isr. J. Math. 16, 263–278 (1973)

    Article  MathSciNet  Google Scholar 

  6. D. Blackmore, A. Prykarpatsky, V. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometric Integrability Analysis (World Scientific, Singapore, 2012)

    Google Scholar 

  7. G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals. Philos. Trans. R. Soc. Lond. 147, 745–803 (1857)

    Article  Google Scholar 

  8. T. Eisner, R. Nagel, Arithmetic progressions—an operator theoretic view. Discrete Contin. Dyn. Syst., Ser. S 6(3), 657–667 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics (Springer, Berlin, 2013)

    Google Scholar 

  10. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemer edi on arithmetic progressions. Anal. Math. 31, 204–256 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167, 481–547 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  13. E.T. Linear, Sequences and Weighted Ergodic Theorems. Abstract and Applied Analysis (Hindawi Publishing Corporation, New York, 2013). Article ID 815726, 5 pages

    Google Scholar 

  14. M. Pollycott, M. Yuri, Dynamical Systems and Ergodic Theory. London Math. Society, vol. 40 (Cambridge University Press, Cambridge, 1998). Student Texts

    Google Scholar 

  15. A.K. Prykarpatsky, On invariant measure structure of a class of ergodic discrete dynamical systems. Nonlinear Oscil. 3(1), 78–83 (2000)

    MATH  MathSciNet  Google Scholar 

  16. A.K. Prykarpatsky, S. Brzychczy, On invariant measure structure of a class of ergodic discrete dynamical systems, in Proceedings of the International Conference SCAN 2000/Interval 2000, September 19–22, Karlsruhe, Germany (2000)

    Google Scholar 

  17. A.K. Prykarpatsky, J. Feldman, On the ergodic and special properties of generalized Boole transformations, in Proc. of Intern. Conference “Difference Equations, Special Functions and Orthogonal Polynomials”, 25–30 July 2005, Munich, Germany (2005), pp. 527–536

    Google Scholar 

  18. Y.A. Prykarpatsky, D. Blackmore, Y. Goilenia, A.K. Prykarpatski, Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole type transformations. Ukr. Math. J. 65(1), 44–57 (2013)

    Google Scholar 

  19. A.M. Samoilenko et al., A geometrical approach to quantum holonomic computing algorithms. Math. Comput. Simul. 66, 1–20 (2004)

    Article  MATH  Google Scholar 

  20. T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, in International Congress of Mathematicians, I (Eur. Math. Soc., Zurich, 2007), pp. 581–608

    Google Scholar 

  21. T. Tao, Topics in Ergodic Theory (2008). http://terrytao.wordpress.com/category/254a-ergodic-theory/

    Google Scholar 

  22. T. Tao, The van der Corput trick, and equidistribution on nilmanifolds, in Topics in Ergodic Theory (2008). http://terrytao.wordpress.com/2008/06/14/the-van-der-corputs-trick-and-equidistribution-on-nilmanifolds

    Google Scholar 

Download references

Acknowledgements

The author is cordially appreciated to professor D. Blackmore (NJ, USA) for valuable discussions of the ergodic measure properties related with generalized Boole transformations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolij K. Prykarpatski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Prykarpatski, A.K. (2015). Ergodic Theory, Boole Type Transformations, Dynamical Systems Theory. In: Mityushev, V., Ruzhansky, M. (eds) Current Trends in Analysis and Its Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-12577-0_38

Download citation

Publish with us

Policies and ethics