Skip to main content

The Amalgam Spaces \(W( L^{p( x) },\ell^{\{ p_{n}\} })\) and Boundedness of Hardy–Littlewood Maximal Operators

  • Conference paper
Current Trends in Analysis and Its Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

Let \(L^{q ( x ) } (\mathbb{R} ) \) be variable exponent Lebesgue space and \(\ell^{ \{ q_{n} \} }\) be discrete analog of this space. In this work we define the amalgam spaces W(L p(x),L q(x)) and \(W ( L^{p ( x ) },\ell^{ \{ q_{n} \} } ) \), and discuss some basic properties of these spaces. Since the global components \(L^{q ( x ) } (\mathbb{R} ) \) and \(\ell^{ \{ q_{n} \} }\) are not translation invariant, these spaces are not a Wiener amalgam space. But we show that there are similar properties of these spaces to the Wiener amalgam spaces. We also show that there is a variable exponent q(x) such that the sequence space \(\ell^{ \{ q_{n} \}}\) is the discrete space of \(L^{q ( x ) } (\mathbb{R} )\). By using this result we prove that \(W ( L^{p ( x ) },\ell ^{ \{ p_{n} \} } ) =L^{p ( x ) } (\mathbb{R} ) \). We also study the frame expansion in \(L^{p ( x ) } ( \mathbb{R} )\). At the end of this work we prove that the Hardy–Littlewood maximal operator from \(W ( L^{s ( x ) },\ell^{ \{t_{n} \} } ) \) into \(W ( L^{u ( x ) },\ell^{ \{v_{n} \} } ) \) is bounded under some assumptions.

This paper is in final form and no version of it will be submitted for publication elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Aydın, A.T. Gürkanlı, On some properties of the spaces \(A_{\omega}^{p ( x ) } (\mathbb{R}^{n} )\). Proc. Jangjeon Math. Soc. 12(2), 141–155 (2009)

    MATH  MathSciNet  Google Scholar 

  2. I. Aydın, A.T. Gürkanlı, Weighted variable exponent amalgam spaces \(W ( L^{p(x)},L_{w}^{q} )\). Glas. Mat. 47(67) 167–176 (2012)

    Google Scholar 

  3. D. Cruz Uribe, A. Fiorenza, C.J. Neugebauer, The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn., Math. 28, 223–238 (2003)

    MATH  MathSciNet  Google Scholar 

  4. D. Cruz Uribe, A. Fiorenza, C.J. Neugebauer, Corrections to the maximal function on variable L p spaces. Ann. Acad. Sci. Fenn., Math. 29, 247–249 (2004)

    MATH  MathSciNet  Google Scholar 

  5. L. Diening, Maximal function on generalized Lebesgue spaces L p(.). Math. Inequal. Appl. 7, 245–253 (2004)

    MATH  MathSciNet  Google Scholar 

  6. L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents. Monograph (2010)

    Google Scholar 

  7. D.E. Edmunds, A. Nekvinda, Averaging operators on \(\ell^{ \{ p_{n} \} }\) and L p(x). Math. Inequal. Appl. 5(2), 235–246 (2002)

    MATH  MathSciNet  Google Scholar 

  8. D.E. Edmunds, J. Lang, A. Nekvinda, On L p(x) norms. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455, 219–225 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. H.G. Feichtinger, Banach convolution algebras of Wiener type, in Functions, Series, Operators, Proc. Conf. Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 38 (1980), pp. 509–524

    Google Scholar 

  10. H.G. Feichtinger, K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of Wiener type spaces. Int. J. Math. Math. Sci. 19, 57–66 (1996)

    Article  MATH  Google Scholar 

  12. J.J. Fournier, J. Stewart, Amalgams of L p and q. Bull. Am. Math. Soc. 13, 1–21 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. A.T. Gürkanlı, I. Aydın, On the weighted variable exponent amalgam space \(W ( L^{p(x)},L_{m}^{q} )\). Acta Math. Sci. 34B(4), 1098–1110 (2014)

    Article  Google Scholar 

  14. C. Heil, An introduction to weighted Wiener amalgams, in Wavelets and Their Applications, Chennai, January 2002 (Allied Publishers, New Delhi, 2003), pp. 183–216

    Google Scholar 

  15. F. Holland, Square-summable positive-definite functions on the real line, linear operators approx. II, in Proc. Conf. Oberwolfach, ISNM, vol. 25 (1974), pp. 247–257

    Google Scholar 

  16. F. Holland, Harmonic analysis on amalgams of L p and q. J. Lond. Math. Soc. 10, 295–305 (1975)

    Article  MATH  Google Scholar 

  17. O. Kovacik, J. Rakosnik, On spaces L p(x) and W k,p(x). Czechoslov. Math. J. 41(116), 592–618 (1991)

    MathSciNet  Google Scholar 

  18. A. Nekvinda, Equivalence of \(\ell^{ \{ p_{n} \} }\) norms and shift operators. Math. Inequal. Appl. 5(4), 1–12 (2002)

    MathSciNet  Google Scholar 

  19. A.E. Taylor, Introduction to Functional Analysis (Wiley, New York, 1958)

    MATH  Google Scholar 

  20. N. Wiener, Generalized Harmonic Analysis Tauberian Theorems (MIT Press, Cambridge, 1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Turan Gürkanlı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gürkanlı, A.T. (2015). The Amalgam Spaces \(W( L^{p( x) },\ell^{\{ p_{n}\} })\) and Boundedness of Hardy–Littlewood Maximal Operators. In: Mityushev, V., Ruzhansky, M. (eds) Current Trends in Analysis and Its Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-12577-0_19

Download citation

Publish with us

Policies and ethics