Advertisement

Multi-user Diverse Recommendations through Greedy Vertex-Angle Maximization

  • Pedro Dias
  • Joao Magalhaes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8819)

Abstract

This paper presents an algorithm capable of providing meaningful and diversified product recommendations to small sets of users. The proposed approach works on a high-dimensional space of latent factors discovered by the bias-SVD matrix factorization techniques. While latent factor models have been widely used for single users, in this paper we formalize recommendations for multi-user as a multi-objective minimization problem. In the pursuit of recommendation diversity, we introduce a metric that explores the angles among product factor vectors and extracts from these a measurable real-life meaning in terms of diversity. In contrast to the majority of recommender systems for groups described in literature, our system employs a collaborative filtering approach based on latent factor space instead of content-based or ratings merging approaches.

Keywords

Singular Value Decomposition Latent Factor Recommender System User Preference User Satisfaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews, pp. 175–186. ACM Press (1994)Google Scholar
  2. 2.
    Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  3. 3.
    Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007. pp. 791–798. ACM (2007)Google Scholar
  4. 4.
    Ovsjanikov, M., Chen, Y.: Topic modeling for personalized recommendation of volatile items. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender system – a case study. In: ACM Webkdd Workshop (2000)Google Scholar
  6. 6.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Crossen, A., Budzik, J., Hammond, K.J.: Flytrap: intelligent group music recommendation. In: Int’l Conference on Intelligent User Interfaces. IUI 2002, pp. 184–185. ACM (2002)Google Scholar
  8. 8.
    McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Cats: A synchronous approach to collaborative group recommendation. In: Int’l Florida Artificial Intelligence Research Society Conference, Melbourne Beach, Florida, USA, May 11-13, pp. 86–91. AAAI Press (2006)Google Scholar
  9. 9.
    Mahato, H., Kern, D., Holleis, P., Schmidt, A.: Implicit personalization of public environments using bluetooth. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems. CHI EA 2008, pp. 3093–3098. ACM (2008)Google Scholar
  10. 10.
    Baltrunas, L., Makcinskas, T., Ricci, F.: Group recommendations with rank aggregation and collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 119–126. ACM (2010)Google Scholar
  11. 11.
    Seko, S., Yagi, T., Motegi, M., Muto, S.: Group recommendation using feature space representing behavioral tendency and power balance among members. In: ACM Conference on Recommender Systems, RecSys 2011, pp. 101–108. ACM (2011)Google Scholar
  12. 12.
    Barbieri, N., Manco, G.: An analysis of probabilistic methods for top-N recommendation in collaborative filtering. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 172–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)Google Scholar
  14. 14.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. European Journal of Operational Research 137(1), 50–71 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, T.: Adaptive forward-backward greedy algorithm for sparse learning with linear models, NIPS (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pedro Dias
    • 1
  • Joao Magalhaes
    • 1
  1. 1.Dep. Computer ScienceUniversidade Nova de LisboaPortugal

Personalised recommendations