Skip to main content

Reducing the Toxicity of Carbon Nanotubes and Fullerenes Using Surface Modification Strategy

  • Chapter
  • First Online:
Book cover Management of Natural Resources in a Changing Environment
  • 1299 Accesses

Abstract

Carbon-based nanoparticles have attracted much attention because of their unique properties like specific strength, lightness, electrical properties and also show several promising potential applications in biology and pharmacology. However, their growing use and mass production have raised several questions about their probable unfavourable effects on human health. For example, use of carbon nanotubes (CNTs) and fullerenes are there in maximum number of consumer products containing carbon-based nanomaterials and have been reportedly found in environmental samples (Farré et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  • Bianco A, Maggini M, Scorrano G, Toniolo C, Marconi G, Villani C, Prato M (1996) Synthesis, chiroptical properties and configurational assignment of fulleroproline derivatives and peptides. J Am Chem Soc 118:4072–4080

    Article  CAS  Google Scholar 

  • Burley GA, Keller PA, Pyne SG (1999) Fullerene amino acids and related derivatives. Fuller Sci Technol 7:973–1001

    Article  CAS  Google Scholar 

  • Chattopadhyay CN, Billups WE, Bandaru PR (2008) Modification of the electrical characteristics of single wall carbon nanotubes through selective functionalization. Appl Phys Lett 93:243113–243116

    Article  Google Scholar 

  • Chawla J, Kumar A (2013) Ranking carbon-based nanomaterials using cytotoxicity to minimize public health risks. Int J Environ Eng Manag 4(3):301–308

    Google Scholar 

  • Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, Chiang LY (1998) Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 26:143–151

    Article  CAS  Google Scholar 

  • Chen J, Swanang P, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  CAS  Google Scholar 

  • Crystal YU, Stacey LH, Robert LT (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898

    Article  Google Scholar 

  • Donaldson K, Murphy F, Poland C, Duffin R, Osmond M, Mccall M, Hawkins S (2009) High aspect ratio nanoparticles: the hazard from long biopersistent fibres. Presented at 4th international conference on nanotechnology—occupational and environmental health, Helsinki, August 2009

    Google Scholar 

  • Drew R (2009) Engineered nanomaterials: a review of the toxicology and health hazards. Prepared for safe work Australia. http://www.safeworkaustralia.gov.au. Accessed 15 Dec 2012

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  CAS  Google Scholar 

  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular: targeting of nanomaterials. Toxicol Sci 100:303–315

    Article  CAS  Google Scholar 

  • Farre M, Pereza S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51

    Article  CAS  Google Scholar 

  • Gao J, Wang HL, Iyer R (2010) Suppression of proinflammatory cytokines in functionalized fullerene-exposed dermal keratinocytes. J Nanomater 2010:1–9

    Google Scholar 

  • Ge JJ, Zhang D, Li Q, Hou H, Graham MJ, Dai L, Harris FW, Cheng SZD (2005) Multiwalled carbon nanotubes with chemically grafted polyetherimides. J Am Chem Soc 127:9984–9985

    Article  CAS  Google Scholar 

  • Grushko YS, Sedov VP, Shilin VA (2007) Technology for manufacture of pure fullerenes C60, C70 and a concentrate of higher fullerenes. Russ J Appl Chem 80:448–455

    Article  CAS  Google Scholar 

  • Guoyong X, Wei-Tai W, Yusong W, Wenmin P, Pinghua W, Qingren Z, Fei L (2006) Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer. Nanotechnology 17:2458–2465

    Article  Google Scholar 

  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes- Djuric S, Mirkovic M et al (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183

    Article  CAS  Google Scholar 

  • Jia ZJ, Wang ZY, Xu C, Liang J, Wei BQ, Wu DH, Zhu SW (1999) Study on poly(methylmethacrylate)/carbon nanotubes composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA (2010) Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118:49–54

    CAS  Google Scholar 

  • Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1085–1104

    Google Scholar 

  • Ke G, Guan WC, Tang CY, Hu Z, Guan WJ, Zemg DL, Deng F (2007) Covalent modification of multiwalled carbon nanotubes with a low molecular weight chitosan. Chin Chem Lett 18:361–364

    Article  CAS  Google Scholar 

  • Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F (2010) In vivo behavior of large doses of ultrashort and full-length single walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4:1481–1492

    Article  CAS  Google Scholar 

  • Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  CAS  Google Scholar 

  • Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel LXT, Nel AE, Wiesner MR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43:6378–6384

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  CAS  Google Scholar 

  • Li X, Lee SC, Zhang S, Akasaka T (2012) Biocompatibility and toxicity of nanobiomaterials. J Nanomater, Article Id 591278, 2 Pages: 10.1155/2012/591278

  • Nierengarten JF (2003) Fullerodendrimers: fullerene-containing macromolecules with intriguing properties. Top Curr Chem 228:87–110

    Article  CAS  Google Scholar 

  • Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–242

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  • Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619

    Article  CAS  Google Scholar 

  • Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F (2002) Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B 67:157–162

    Article  CAS  Google Scholar 

  • Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA (2011) In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol in Vitro 25:2105–2112

    Article  CAS  Google Scholar 

  • Sano M, Okamura J, Shinkai S (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze- Hardy Rule. Langmuir 17:7172–7173

    Article  CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B et al (2004) The differential cytotoxicity of watersoluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  Google Scholar 

  • Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, Sun X, Dai H, Gambhi SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221

    Article  CAS  Google Scholar 

  • Schneider NS, Darwish AD, Kroto HW, Taylor R, Walton DRM (1994) Formation of fullerols via hydroboration of fullerene-CGO. J Chem Soc Chem Commun 4:463–464

    Article  Google Scholar 

  • Shaffer MSP, Koziol K (2002) Polystyrene grafted multi-walled carbon nanotubes. Chem Commun 18:2074–2075

    Article  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A 66:1909–1926

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103:3357–3362

    Article  CAS  Google Scholar 

  • Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI (2009) Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 239:224–232

    Article  CAS  Google Scholar 

  • Wang J, Sun RH, Zhang N, Nie H, Liu JH, Wang JN, Wang H, Liu Y (2009) Multi-walled carbon nanotubes do not impair immune functions of dendritic cells. Carbon 47:1752–1760

    Article  CAS  Google Scholar 

  • Wu M, Gordon RE, Herbert R, Padilla M, Moline J et al (2010) Case report: lung disease in world trade center responders exposed to dust and smoke: carbon nanotubes found in the lungs of world trade center patients and dust samples. Environ Health Perspect 118:499–504

    Article  CAS  Google Scholar 

  • Yin JJ, Lao F, Fu PP, Wame WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J et al (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalised fullerene materials. Biomaterials 30:611–612

    Article  CAS  Google Scholar 

  • Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (Daniorerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Science and Technology (India) for supporting this study through the grant no: DST/TM/WTI/2K11/301(G) and Indian Institute of Technology Delhi (India) for offering the Summer Faculty Research Fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Chawla, J., Kumar, A. (2015). Reducing the Toxicity of Carbon Nanotubes and Fullerenes Using Surface Modification Strategy. In: Raju, N., Gossel, W., Sudhakar, M. (eds) Management of Natural Resources in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-12559-6_13

Download citation

Publish with us

Policies and ethics