Skip to main content

Use of Indigenous Bacteria from Arsenic Contaminated Soil for Arsenic Bioremediation

  • Chapter
  • First Online:
Management of Natural Resources in a Changing Environment

Abstract

Arsenic (As) is a ubiquitous element found in the earth’s crust. It is now ranked first in a list of 19 hazardous substances by the Agency for Toxic Substances and Disease Registry and United States Environmental Protection Agency (Goering et al. 1999; Prerna et al. 2007). Among different chemical forms of As in the environment, the most often encountered toxic forms are arsenite [As(III)] and arsenate [As(V)] (Buchet and Lauwerys 1981; Leonard 1991; Mukhopadhyay et al. 2002). The abundance of different arsenic forms and its mobility in soil depends on several factors like pH, redox potential, presence of other elements, organic matter content, texture and biotic functions therein (Woolson 1977). When environmental conditions change, the speciation and mobility of arsenic may also change. As(III) is more toxic due to its affinity to bind with functional groups, like SH and imidazolium nitrogens of different biomolecules including catalytic proteins (Krumova et al. 2008). On the other hand, arsenate (AsO4 3−) mimics phosphate (PO4 3−); thus it affects cell metabolism by interfering with phosphorylation processes (Tseng 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 371(6500):750

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347

    Article  CAS  Google Scholar 

  • ASA (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. Page AL (ed). Agronomy Society of America, Madison

    Google Scholar 

  • Bachate SP, Cavalca L, Andreoni V (2009) Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol 107:145–156

    Article  CAS  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1736–1747

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World J Agric Sci 5(4):425–431

    CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1981) Evaluation of exposure to inorganic arsenic in man. Analytical techniques for heavy metals in biological fluids. Elsevier, Amsterdam

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Goering PL, Aposhian HV, Mass MJ, Cebrian M, Beck BD, Waalkes MP (1999) The enigma of arsenic carcinogenesis: role of metabolis. Toxicol Sci 49(1):5–14

    Article  CAS  Google Scholar 

  • Hu S, Lu J, Jing C (2012) A novel colorimetric method for field arsenic speciation analysis. J Environ Sci 24(7):1341–1346

    Article  CAS  Google Scholar 

  • Jareonmit P, Mehta M, Sadowsky MJ, Sajjaphan K (2012) Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand. World J Microbiol Biotechnol 28(5):2287–2292

    Article  CAS  Google Scholar 

  • Krumova K, Nikolovska M, Groudeva V (2008) Characterization of arsenic-transforming bacteria from arsenic contaminated sites in Bulgaria. Biotechnol Biotechnol Equip 22(2):729–735

    Article  CAS  Google Scholar 

  • Leonard A (1991) Arsenic. Metals and their compounds in the environment. VCH, Weinheim

    Google Scholar 

  • Maidack BL, Olsen GJ, Larson N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25(1):109–111

    Article  Google Scholar 

  • Miyatake M, Hayashi S (2009) Characteristics of arsenic removal from aqueous solution by Bacillus megaterium strain UM-123. J Environ Biotechnol 9(2):123–129

    Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung T, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Prerna CP, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JK (2007) Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187(3):171–183

    Article  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A (2008) Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Saf 69:317–324

    Article  Google Scholar 

  • Sneath P (1986) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergeys manual of systematic bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Summers AO (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:S85–S92

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Tseng CH (2004) The potential biological mechanisms of arsenic induced diabetes mellitus. Toxicol Appl Pharmacol 197:67–83

    Article  CAS  Google Scholar 

  • US EPA (2002) Arsenic treatment technologies. United States Environmental Protection Agency. EPA 542, pp 2–4

    Google Scholar 

  • Walkley A, Black IA (1947) A critical examination of a rapid method for determining organic carbon in soil: effect of variation in digestion and inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Woolson EA (1977) Fate of arsenicals in different environmental substrates. Environ Health Perspect 19:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial grants received from DST, Govt. of India under INSPIRE Programme and DBT, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Mallick, I., Hossain, S.T., Sinha, S., Mukherjee, S.K. (2015). Use of Indigenous Bacteria from Arsenic Contaminated Soil for Arsenic Bioremediation. In: Raju, N., Gossel, W., Sudhakar, M. (eds) Management of Natural Resources in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-12559-6_11

Download citation

Publish with us

Policies and ethics