Skip to main content

Analyticity of Rotational Water Waves

  • Conference paper
  • First Online:
Elliptic and Parabolic Equations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 119))

Abstract

The aim of this survey is to review some recent results concerning the regularity properties of two-dimensional rotational free-surface flows. It is shown that for large classes of vorticity distributions, the corresponding free water surface together with all streamlines beneath are real-analytic curves. The models considered here include, besides classical periodic water waves of finite depth, solitary waves, waves with infinite depth, capillary waves, and waves over stratified flows. It is also pointed out that the analyticity of the streamlines leads to an intrinsic characterization of symmetric solitary waves with one single crest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Helmholtz’s law for two-dimensional flows ensures that the vorticity is constant along C 1-trajectories. This implies particularly that once the vorticity does not vanish in a single point irrotationality is lost forever.

  2. 2.

    The mapping \(\mathcal{H}\) is called a partial hodograph transformation, because its first component is trivial. The full hodograph transformation involves the velocity potential ϕ – the holomorphic conjugate to the stream function ψ, that is \(\varphi + i\psi\) is holomorphic. Note that ϕ is only well defined for irrotational flows. Furthermore, it is worthwhile to mention that the full hodograph transformation is a conformal mapping, in contrast to the partial hodograph transformation \(\mathcal{H}\).

  3. 3.

    By a strong solution of any of the above formulations, we mean a set of functions that satisfies the corresponding system of equations almost everywhere and which fulfils (4), (12), or (15), respectively.

  4. 4.

    In the Sects. 2.2 and 2.3, the Sobolev spaces are defined in the context of λ-periodic functions with respect to the variable x.

  5. 5.

    If \(r=\infty,\) then \(\alpha=1\). In this case, we use the notation \(C^{1+1}(\bar{\Omega}):=W^{2}_\infty(\Omega).\)

  6. 6.

    Given an open subset \(U\subset \mathbb{R}^m\) , \(m\geq 1\), the space \(\mbox{\it BUC}\,^{k} (U)\), \(k\in\mathbb{N},\) consists of all functions which possess bounded uniformly continuous derivatives up to order k. Given \(\alpha\in(0,1)\). \(\mbox{\it BUC}\,^{k+\alpha} (U)\) contains all functions of \(\mbox{\it BUC}\,^{k} (U)\) which have uniformly Hölder continuous derivatives of order k.

References

  1. S. Angenent, Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature. Ann. Math. 132(3), 451–483 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. C.J. Amick, L.E. Fraenkel, J.F. Toland, On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. B.T. Benjamin, The solitary wave on a stream with an arbitrary distribution of vorticity. J. Fluid Mech. 12, 97–116 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Chen, W.-X. Li, L.-J. Wang, Regularity of traveling free surface water waves with vorticity. J. Nonlinear Sci. 23, 1111–1142 (2013)

    Google Scholar 

  6. A. Constantin, On the deep water wave motion. J. Phys. A. 34, 1405–1417 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Constantin, Nonlinear Water Waves with Applications to Wave-current Interactions and Tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81 (SIAM, Philadelphia, 2011)

    Google Scholar 

  8. A. Constantin, J. Escher, Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Constantin, J. Escher, Analyticity of periodic travelling free surface water waves with vorticity, Ann. Math. 173, 559–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Constantin, W. Strauss, Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Constantin, W. Strauss, Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)

    MATH  MathSciNet  Google Scholar 

  12. A. Constantin, W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202, 133–175 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Constantin, E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33–67 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Constantin, M. Ehrnström, E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity. Duke Math J. 140, 591–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Craig, P. Sternberg, Symmetry of solitary waves. Comm. Partial Differential Equations. 13, 603–633 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides hétérogènes. Atti Accad. Naz. Lincei Rend. 6, 814–819 (1932)

    Google Scholar 

  17. M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)

    Google Scholar 

  18. M.-L. Dubreil-Jacotin, Sur les théorèmes d’existence relatifs aux ondes permanentes périodiques a deux dimensions dans les liquides hétérogènes. J. Math. Pures et Appl. 9, 43–67 (1937)

    Google Scholar 

  19. J. Escher, Regularity of rotational travelling water waves. Philos. Trans. R. Soc. Lond. A. 370, 1602–1615 (2011)

    Article  MathSciNet  Google Scholar 

  20. J. Escher, B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function. Differential Integral Equations. 27(3–4), 217–232 (2014)

    MATH  MathSciNet  Google Scholar 

  21. J. Escher, G. Simonett, Analyticity of the interface in a free boundary problem. Math. Ann. 305 (3–4), 439–459 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  23. P.R. Garabedian, Surface waves of finite depth. J. Anal. Math. 14, 161–169 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 2001)

    MATH  Google Scholar 

  25. D. Henry, On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  26. D. Henry, Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity. SIAM J. Math. Anal. 42(6), 3103–3111 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Henry, On the regularity of capillary water waves with vorticity. C. R. Acad. Sci. Paris Ser. I. 349 (3–4), 171–173 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Henry, Analyticity of the free surface for periodic travelling capillary-gravity water waves with vorticity. J. Math. Fluid Mech. 14(2), 249–254 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Henry, Regularity for steady periodic capillary water waves with vorticity. Philos. Trans. R. Soc. Lond. A. 370, 1616–1628 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Henry, B.-V. Matioc, On the regularity of steady periodic stratified water waves. Comm. Pure Appl. Anal. 11 (4), 1453–1464 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. V.M. Hur, Symmetry of solitary water waves with vorticity. Math. Res. Lett. 15, 491–509 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. V.M. Hur, Analyticity of rotational flows beneath solitary water waves. Int. Math. Res. Not. 11, 2550–2570 (2012)

    Google Scholar 

  33. R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press Cambridge, 1997)

    Google Scholar 

  34. H. Lewy, A note on harmonic functions and a hydrodynamical application. Proc. Amer. Math. Soc. 3, 111–113 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1978)

    MATH  Google Scholar 

  36. R.R. Long, Some aspects of the flow of stratified fluids. Part I: A theoretical investigation. Tellus. 5, 42–57 (1953)

    Article  MathSciNet  Google Scholar 

  37. C.I. Martin, Regularity of steady periodic capillary water waves with constant vorticity. J. Nonlinear Math. Phys. 19, 124000–6(7 p) (2012)

    Article  Google Scholar 

  38. C.I. Martin, Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity. Nonlinear Anal. Real World Appl. 14, 131–149 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. C.I. Martin, B.-V. Matioc, Steady periodic water waves with unbounded vorticity: Equivalent formulations and existence results. J. Nonlinear Sci. 26, 633–659 (2014)

    Google Scholar 

  40. A.-M. Matei, The Neumann problem for free boundaries in two dimensions. C. R. Acad. Sci. Paris Ser. I. 335, 597–602 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. B.-V. Matioc, Analyticity of the streamlines for periodic traveling water waves with bounded vorticity. Int. Math. Res. Not. 17, 3858–3871 (2011)

    MathSciNet  Google Scholar 

  42. A.-V. Matioc, Steady internal water waves with a critical layer bounded by the wave surface. J. Nonlinear Math. Phys. 19, 125000–8(21p) (2012)

    Google Scholar 

  43. B.-V. Matioc, On the regularity of deep-water waves with general vorticity distributions. Quart. Appl. Math. LXX(1), 393–405 (2012)

    Article  MathSciNet  Google Scholar 

  44. B.-V. Matioc, Regularity results for deep-water waves with Hölder continuous vorticity. Appl. Anal. 92, 2144–2151 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete Contin. Dyn. Syst. Ser. A. 34(8), 3125–3133 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. A.-V. Matioc, B.-V. Matioc, Regularity and symmetry properties of rotational solitary water waves. J. Evol. Equ. 12, 481–494 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. A.-V. Matioc, B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity. Differential Integral Equations 26, 129–140 (2013)

    Google Scholar 

  48. A.-V. Matioc, B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results. Comm. Math. Phys. 330, 859–886 (2014)

    Google Scholar 

  49. H. Okamoto, M. Shōji, in The Mathematical Theory of Permanent Progressive Water-Waves. Adv. Ser. Nonlinear Dynam., vol. 20 (World Scientific, River Edge, 2001)

    Google Scholar 

  50. O.M. Philllips, Banner M.L., Wave breaking in presence of wind drift and swell. J. Fluid Mech. 66, 625–640 (1974)

    Article  Google Scholar 

  51. J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304–318 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  52. G.G. Stokes, in Considerations relative to the greatest height of oscillatory irrational waves which can be propagated without change of form. Mathematical and Physical Papers, vol. I (Cambridge University Press, Cambridge, 1880), pp. 225–228

    Google Scholar 

  53. C. Swan, I.P. Cummins, R.L. James, An experimental study of two-dimensional surface water waves propagating on depth-varying currents. Part 1. Regular waves. J. Fluid Mech. 428, 273–304 (2001)

    Article  MATH  Google Scholar 

  54. G. Thomas, G. Klopman, Wave-current Interactions in the Near-shore Region (WIT, Southampton, (1997)

    Google Scholar 

  55. J.F. Toland, Stokes waves. Topol. Methods Nonlinear Anal. 1, 1–48 (1996)

    MathSciNet  Google Scholar 

  56. E. Wahlén, Steady water waves with a critical layer. J. Differential Equations. 246, 1468–2483 (2009)

    Article  Google Scholar 

  57. L.-J. Wang, Regularity of traveling periodic stratified water waves with vorticity. Nonlinear Anal. 81, 247–263 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  58. C.S. Yih, The role of drift mass in the kinetic energy and momentum of periodic water waves and sound waves. J. Fluid Mech. 331, 429–438 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Escher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Escher, J., Matioc, BV. (2015). Analyticity of Rotational Water Waves. In: Escher, J., Schrohe, E., Seiler, J., Walker, C. (eds) Elliptic and Parabolic Equations. Springer Proceedings in Mathematics & Statistics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-12547-3_5

Download citation

Publish with us

Policies and ethics