Skip to main content

The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS

  • Conference paper
  • First Online:
Elliptic and Parabolic Equations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 119))

  • 1181 Accesses

Abstract

We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential. We first review some recent results on existence and nonexistence of steady states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit, when the ratio between inertial and damping effects decays to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Escher, Ph. Laurençot, Ch. Walker, A parabolic free boundary problem modeling electrostatic MEMS. Arch. Ration. Mech. Anal. 211, 389–417 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Escher, Ph. Laurençot, Ch. Walker, Dynamics of a free boundary problem with curvature modeling electrostatic MEMS. Trans. Amer. Math. Soc. (to appear)

    Google Scholar 

  3. J. Escher, Ph. Laurençot, Ch. Walker, Finite time singularity in a free boundary problem modeling MEMS. C. R. Acad. Sci. Paris Sér. I Math. 351, 807–812 (2013)

    Article  MATH  Google Scholar 

  4. P. Esposito, N. Ghoussoub, and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS. Courant Lecture Notes in Mathematics, vol. 20 (Courant Institute of Mathematical Sciences, New York, 2010)

    Google Scholar 

  5. H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces (North-Holland, Amsterdam, 1985)

    MATH  Google Scholar 

  6. H.-Ch. Grunau, Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem. Adv. Diff. Equat. 7, 177–196 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Y. Guo, Dynamical solutions of singular wave equations modeling electrostatic MEMS. SIAM J. Appl. Dyn. Syst. 9, 1135–1163 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Guo, B. Lai, D. Ye, Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions. Proc. Amer. Math. Soc. 142, 2027–2034 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Haraux, E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 100, 191–206 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. N.I. Kavallaris, A.A. Lacey, C.V. Nikolopoulos, D.E. Tzanetis. A hyperbolic non-local problem modelling MEMS technology. Rocky Mountain J. Math. 41, 505–534 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. KisyÅ„ski, Sur les Ă©quations hyperboliques avec petit paramètre. Colloq. Math. 10, 331–343 (1963)

    MATH  MathSciNet  Google Scholar 

  12. Ph. Laurençot, Ch. Walker, A stationary free boundary problem modeling electrostatic MEMS. Arch. Ration. Mech. Anal. 207, 139–158 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ph. Laurençot, Ch. Walker, A free boundary problem modeling electrostatic MEMS: I. Linear bending effects. Math. Ann. 360, 307--349 (2014)

    Google Scholar 

  14. Ph. Laurençot, Ch. Walker, A free boundary problem modeling electrostatic MEMS: II. Nonlinear bending effects. Math. Models Methods Appl. Sci. 24, 2549--2568 (2014)

    Google Scholar 

  15. Ph. Laurençot, Ch. Walker, Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry. J. Anal. Math. (to appear)

    Google Scholar 

  16. Ph. Laurençot, Ch. Walker, A fourth-order model for MEMS with clamped boundary conditions. Proc. Lond. Math. Soc. 109, 1435–1464 (2014)

    Google Scholar 

  17. A.E. Lindsay, J. Lega, Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor. SIAM J. Appl. Math. 72, 935–958 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. M.P. Owen, Asymptotic first eigenvalue estimates for the biharmonic operator on a rectangle. J. Differ. Equat. 136, 166–190 (1997)

    Article  MATH  Google Scholar 

  19. J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS (Chapman & Hall/CRC, Boca Raton, FL, 2003)

    MATH  Google Scholar 

  20. J. Simon, Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laurençot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Laurençot, P., Walker, C. (2015). The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. In: Escher, J., Schrohe, E., Seiler, J., Walker, C. (eds) Elliptic and Parabolic Equations. Springer Proceedings in Mathematics & Statistics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-12547-3_10

Download citation

Publish with us

Policies and ethics