Skip to main content

Repetitive Transcranial Magnetic Stimulation in Panic Disorder

  • Chapter
  • First Online:
Panic Disorder

Abstract

The available treatment methods for panic disorder (PD; pharmacotherapy and cognitive behavioral therapy) are well documented as safe and effective. However, few patients remain free of panic attacks or in complete remission. With the advancement in the understanding of the neurobiological mechanisms involved in PD, new treatments have been proposed. One such method is transcranial magnetic stimulation (TMS), a non-invasive method of focal brain stimulation. TMS is based on the Faraday's law of electromagnetic induction, where an electric current is influenced by the magnetic field into the brain, inducing an electric current that depolarizes or hyperpolarizes neurons. Unlike for depression, only few studies are available today investigating the therapeutic effects of rTMS for PD. Thus, this chapter aimed to provide information on the current research approaches and main findings regarding the therapeutic use of rTMS in the context of PD. So far, there is no conclusive evidence of the efficacy of rTMS as a treatment for PD. While positive results were found in most of studies, various treatment parameters, such as location, frequency, intensity and duration have been used unsystematically, making difficult the interpretation of results and providing little guidance about which treatment parameters (i.e., the stimulus location and frequency) may be more useful for the PD treatment. Therefore, further studies are needed to clearly determine the role of rTMS in PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paes F, Machado S, Arias-Carrión O, Velasques B, Teixeira S, Budde H, et al. The value of repetitive transcranial magnetic stimulation (rTMS) for the treatment of anxiety disorders: an integrative review. CNS Neurol Disord Drug Targets. 2011;10:610–20.

    Article  CAS  PubMed  Google Scholar 

  2. Machado S, Paes F, Velasques B, Teixeira S, Piedade R, Ribeiro P, et al. Is rTMS an effective therapeutic strategy that can be used to treat anxiety disorders? Neuropharmacology. 2012;62(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  3. Nardi AE, Valença AM, editors. Transtorno de pânico: diagnóstico e tratamento. Rio de Janeiro: Guanabara Koogan; 2005.

    Google Scholar 

  4. Katschnig H, Amering M, Stolk JM, Klerman GL, Ballenger JC, Briggs A, et al. Long-term follow-up after a drug trial for panic disorder. Br J Psychiatry. 1995;167(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  5. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.

    Article  CAS  PubMed  Google Scholar 

  6. Tyc F, Boyadjian A. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. Rev Neurosci. 2006;17:469–95.

    Article  PubMed  Google Scholar 

  7. Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, et al. Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry. 2001;50:712–20.

    Article  CAS  PubMed  Google Scholar 

  8. Mills KR. Magnetic stimulation of the human nervous system. New York: Oxford University Press; 1999.

    Google Scholar 

  9. Cadwell J. Principles of magnetoelectric stimulation. In: Chokroverty S, editor. Magnetic stimulation in clinical neurophysiology. Boston: Butterworths; 1990.

    Google Scholar 

  10. Barker AT. The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:3–21.

    CAS  PubMed  Google Scholar 

  11. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  CAS  PubMed  Google Scholar 

  12. Machado S, Bittencourt J, Minc D, Portella CE, Velasques B, Cunha M, et al. Therapeutic applications of repetitive transcranial magnetic stimulation in clinical neurorehabilitation. Funct Neurol. 2008;23(3):113–22.

    PubMed  Google Scholar 

  13. Walsh V, Rushworth M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia. 1999;37(2):125–35.

    CAS  PubMed  Google Scholar 

  14. Pascual-Leone A, Bartres-Faz D, Keenan JP. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  16. Terao Y, Ugawa Y, Suzuki M, Sakai K, Hanajima R, Gemba-Shimizu K, et al. Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation. Exp Brain Res. 1997;115(3):541–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachis F, Carroll K, et al. Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry. 2003;60:49–56.

    Article  PubMed  Google Scholar 

  18. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  19. Eichammer P, Johann M, Kharraz A, Binder H, Pittrow D, Wodarz N, et al. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry. 2003;64(8):951–3.

    Article  Google Scholar 

  20. Wagner T, Gangitano M, Romero R, Théoret H, Kobayashi M, Anschel D, et al. Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett. 2004;354(2):91–4.

    Article  CAS  PubMed  Google Scholar 

  21. Salinas FS, Lancaster JL, Fox PT. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method. Phys Med Biol. 2009;54(12):3631–47.

    Article  CAS  PubMed  Google Scholar 

  22. Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol. 2007;24(1):31–8.

    Article  PubMed  Google Scholar 

  23. Nagarajan SS, Durand DM. A generalized cable equation for magnetic stimulation of axons. IEEE Trans Biomed Eng. 1996;43(3):304–12.

    Article  CAS  PubMed  Google Scholar 

  24. Rotem A, Moses E. Magnetic stimulation of one-dimensional neuronal cultures. Biophys J. 2008;94(12):5065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, et al. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport. 1997;8(11):2535–8.

    Article  CAS  PubMed  Google Scholar 

  26. Stokes MG, Chambers CD, Gould IC, English T, McNaught E, McDonald O, et al. Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin Neurophysiol. 2007;118(7):1617–25.

    Article  PubMed  Google Scholar 

  27. Cukic M, Kalauzi A, Ilic T, Miskovic M, Ljubisavljevic M. The influence of coil-skull distance on transcranial magnetic stimulation motor-evoked responses. Exp Brain Res. 2009;192(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  28. Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol. 2005;116(4):775–9.

    Article  PubMed  Google Scholar 

  29. Pitcher D, Walsh V, Yovel G, Duchaine B. RTMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol. 2007;17(18):1568–73.

    Article  CAS  PubMed  Google Scholar 

  30. McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, et al. The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry. 2001;49(5):454–9.

    Article  CAS  PubMed  Google Scholar 

  31. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178–84.

    CAS  PubMed  Google Scholar 

  32. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of RTMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deblieck C, Thompson B, Iacoboni M, Wu AD. Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Hum Brain Mapp. 2008;29(6):662–70.

    Article  PubMed  Google Scholar 

  34. Schluter ND, Rushworth MF, Mills KR, Passingham RE. Signal-, set-, and movement-related activity in the human premotor cortex. Neuropsychologia. 1999;37(2):233–43.

    Article  CAS  PubMed  Google Scholar 

  35. Devlin JT, Matthews PM, Rushworth MF. Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci. 2003;15(1):71–84.

    Article  PubMed  Google Scholar 

  36. O'Shea J, Muggleton NG, Cowey A, Walsh V. Timing of target discrimination in human frontal eye fields. J Cogn Neurosci. 2004;16(6):1060–7.

    Article  PubMed  Google Scholar 

  37. de Graaf TA, Sack AT. Null results in RTMS: from absence of evidence to evidence of absence. Neurosci Biobehav Rev. 2011;35(3):871–7.

    Article  PubMed  Google Scholar 

  38. Sandrini M, Umiltà C, Rusconi E. The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev. 2011;35(3):516–36.

    Article  PubMed  Google Scholar 

  39. Marzi CA, Miniussi C, Maravita A, Bertolasi L, Zanette G, Rothwell JC, et al. Transcranial magnetic stimulation selectively impairs interhemi- spheric transfer of visuo-motor information in humans. Exp Brain Res. 1998;118(3):435–8.

    Article  CAS  PubMed  Google Scholar 

  40. Dormal V, Andres M, Pesenti M. Dissociation of numerosity and duration processing in the left intraparietal sulcus: a transcranial magnetic stimulation study. Cortex. 2008;44(4):462–9.

    Article  PubMed  Google Scholar 

  41. Knops A, Nuerk HC, Sparing R, Foltys H, Willmes K. On the functional role of human parietal cortex in number processing: how gender mediates the impact of a ‘virtual lesion’ induced by rTMS. Neuropsychologia. 2006;44(12):2270–83.

    Article  PubMed  Google Scholar 

  42. Sandrini M, Rossini PM, Miniussi C. The differential involvement of inferior parietal lobule in number comparison: an rTMS study. Neuropsychologia. 2004;42(14):1902–9.

    Article  PubMed  Google Scholar 

  43. Cappelletti M, Barth H, Fregni F, Spelke ES, Pascual-Leone A. rTMS over the intraparietal sulcus disrupts numerosity processing. Exp Brain Res. 2007;179(4):631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cohen Kadosh R, Cohen Kadosh K, Schuhmann T, Kaas A, Goebel R, Henik A, et al. Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr Biol. 2007;17(8):689–93.

    Article  CAS  PubMed  Google Scholar 

  45. Herwig U, Cardenas-Morales L, Connemann BJ, Kammer T, Schönfeldt-Lecuona C. Sham or real-post hoc estimation of stimulation condition in a randomized transcranial magnetic stimulation trial. Neurosci Lett. 2010;471(1):30–3.

    Article  CAS  PubMed  Google Scholar 

  46. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA. Sham RTMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry. 2001;49(5):460–3.

    Article  CAS  PubMed  Google Scholar 

  47. Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry. 2000;47(4):325–31.

    Article  CAS  PubMed  Google Scholar 

  48. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg. 1993;78:393–401.

    Article  CAS  PubMed  Google Scholar 

  49. Shah DB, Weaver L, O'Reardon JP. Transcranial magnetic stimulation: a device intended for the psychiatrist's office, but what is its future clinical role? Expert Rev Med Devices. 2008;5(5):559–66.

    Article  PubMed  Google Scholar 

  50. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multi-site randomized controlled trial. Biol Psychiatry. 2007;62(11):1208–16.

    Article  PubMed  Google Scholar 

  51. Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C, et al. A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin Neurophysiol. 2007;118(3):709–16.

    Article  PubMed  Google Scholar 

  52. Lisanby SH, Kinnunen LH, Crupain MJ. Applications of TMS to therapy in psychiatry. J Clin Neurophysiol. 2002;19(4):344–60.

    Article  PubMed  Google Scholar 

  53. Dileone M, Profice P, Pilato F, Ranieri F, Capone F, Musumeci G, et al. Repetitive transcranial magnetic stimulation for ALS. CNS Neurol Disord Drug Targets. 2010;9(3):331–4.

    Article  CAS  PubMed  Google Scholar 

  54. Fitzgerald PB, Benitez J, de Castella A, Daskalakis ZJ, Brown TL, Kulkarni J. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am J Psychiatry. 2006;163:88–94.

    Article  PubMed  Google Scholar 

  55. Iyer MB, Schelper N, Wassermann EM. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J Neurosci. 2003;23:10867–72.

    CAS  PubMed  Google Scholar 

  56. Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586:5717–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, et al. BDNF val66met polymorphism is associated with modified experience dependent plasticity in human motor cortex. Nat Neurosci. 2006;9:735–7.

    Article  CAS  PubMed  Google Scholar 

  58. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    Article  CAS  PubMed  Google Scholar 

  59. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–30.

    Article  CAS  PubMed  Google Scholar 

  60. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.

    Article  CAS  PubMed  Google Scholar 

  61. Davies CH, Starkey SJ, Pozza MF, Collingridge GL. GABA autoreceptors regulate the induction of LTP. Nature. 1991;349:609–11.

    Article  CAS  PubMed  Google Scholar 

  62. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci. 2004;24:3379–85.

    Article  CAS  PubMed  Google Scholar 

  63. Coutinho FC, Dias GP, do Nascimento Bevilaqua MC, Gardino PF, Pimentel Range B, Nardi AE. Current concept of anxiety: implications from Darwin to the DSM-V for the diagnosis of generalized anxiety disorder. Expert Rev Neurother. 2010;10:1307–20.

    Article  PubMed  Google Scholar 

  64. Tallman JF, Paul SM, Skolnick P, Gallager DW. Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science. 1980;207:274–81.

    Article  CAS  PubMed  Google Scholar 

  65. Zwanzger P, Fallgatter AJ, Zavorotnyy M, Padberg F. Anxiolytic effects of transcranial magnetic stimulation e an alternative treatment option in anxiety disorders? J Neural Transm. 2009;116:767–75.

    Article  PubMed  Google Scholar 

  66. Pallanti S, Bernardi S. Neurobiology of repeated transcranial magnetic stimulation in the treatment of anxiety: a critical review. Int Clin Psychopharmacol. 2009;24:163–73.

    Article  PubMed  Google Scholar 

  67. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heller W, Nitschke JB, Etienne MA, Miller GA. Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol. 1997;106:376–85.

    Article  CAS  PubMed  Google Scholar 

  69. Keller J, Nitschke JB, Bhargava T, Deldin PJ, Gergen JA, Miller GA, et al. Neuropsycological differentiation of depression and anxiety. J Abnorm Psychol. 2000;109:3–10.

    Article  CAS  PubMed  Google Scholar 

  70. Hoffman RE, Cavus I. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry. 2002;159:1093–102.

    Article  PubMed  Google Scholar 

  71. George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci. 1996;8:373–82.

    Article  CAS  PubMed  Google Scholar 

  72. Sakkas P, Psarros C, Papadimitriou GN, Theleritis CG, Soldatos CR. Repetitive transcranial magnetic stimulation (rTMS) in a patient suffering from comorbid depression and panic disorder following a myocardial infarction. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(5):960–2.

    Article  PubMed  Google Scholar 

  73. Mantovani A, Lisanby SH, Pieraccini F, Ulivelli M, Castrogiovanni P, Rossi S. Repetitive Transcranial Magnetic Stimulation (rTMS) in the treatment of panic disorder (PD) with comorbid major depression. J Affect Disord. 2007;102(1–3):277–80.

    Article  PubMed  Google Scholar 

  74. Dresler T, Ehlis AC, Plichta MM, Richter MM, Jabs B, Lesch KP, et al. Panic disorder and a possible treatment approach by means of high-frequency rTMS: a case report. World J Biol Psychiatry. 2009;10(4 Pt 3):991–7.

    Article  PubMed  Google Scholar 

  75. Machado S, Santos V, Paes F, Arias-Carrión O, Carta MG, Silva AC, et al. Repetitive transcranial magnetic stimulation (rTMS) to treat refractory panic disorder patient: a case report. CNS Neurol Disord Drug Targets. 2014;13(6):1075–8.

    Article  CAS  PubMed  Google Scholar 

  76. Prasko J, Zálesk R, Bares M, Horácek J, Kopecek M, Novák T, et al. The effect of repetitive transcranial magnetic stimulation (rTMS) add on serotonin reuptake inhibitors in patients with panic disorder: a randomized, double blind sham controlled study. Neuro Endocrinol Lett. 2007;28(1):33–8.

    PubMed  Google Scholar 

  77. Mantovani A, Aly M, Dagan Y, Allart A, Lisanby SH. Randomized sham controlled trial of repetitive transcranial magnetic stimulation to the dorsolateral prefrontal cortex for the treatment of panic disorder with comorbid major depression. J Affect Disord. 2013;144(1–2):153–9.

    Article  PubMed  Google Scholar 

  78. Deppermann S, Vennewald N, Diemer J, Sickinger S, Haeussinger FB, Notzon S, et al. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS. Biomed Res Int. 2014;2014:542526.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Machado, S., Paes, F., Arias-Carrión, O. (2016). Repetitive Transcranial Magnetic Stimulation in Panic Disorder. In: Nardi, A., Freire, R. (eds) Panic Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-12538-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12538-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12537-4

  • Online ISBN: 978-3-319-12538-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics