Skip to main content

Surface-Enhanced Raman Scattering (SERS) Mechanisms of Metal Scale Replicas

  • Chapter
  • First Online:
Metallic Butterfly Wing Scales

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 556 Accesses

Abstract

As shown in Chap. 4, surface-enhanced Raman scattering (SERS) substrates with scale structure have unique advantages in terms of sensitivity, repeatability, and mass-producibility. However, the mechanism by which such performance is achieved should be clarified. This may help select appropriate biostructures from countless biological candidates for SERS application. In this chapter, we first discuss the SERS performance of differently textured metal scales, whose microstructures were regulated by changing the metal deposition time (DT). We then compare the contributions from different structural features and target the key contributor to SERS performance. Such a structure is then analyzed using a finite element method (FEM). The resulting mechanism will be checked by studying the SERS performance of Cu scales with different structures. All these results will illustrate a mechanism by which metal butterfly scale replicas can effectively enhance the Raman signals of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma B, Frontiera RR, Henry A-I et al (2012) SERS: Materials, applications, and the future. Mater Today 15:16–25

    Article  Google Scholar 

  2. Otto A (1991) Surface-enhanced Raman scattering of adsorbates. J Raman Spectrosc 22:743–752

    Article  Google Scholar 

  3. Moskovits M (2005) Surface-enhanced Raman spectroscopy: A brief retrospective. J Raman Spectrosc 36:485–496

    Article  Google Scholar 

  4. Ding S-Y, Wu D-Y, Yang Z-L et al (2008) Some progresses in mechanistic studies on surface-enhanced Raman scattering. Chem J Chin Univ 29:2569–2581

    Google Scholar 

  5. Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37:1061–1073

    Article  Google Scholar 

  6. Chang C, Clemente F, Kox R et al (2010) Raman scattered photon transmission through a single nanoslit. Appl Phy Lett 96:061108

    Article  Google Scholar 

  7. Mclellan JM, Siekkinen A, Chen J et al (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126

    Article  Google Scholar 

  8. Duan H, Hu H, Kumar K et al (2011) Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. ACS Nano 5:7593–7600

    Article  Google Scholar 

  9. He D, Hu B, Yao Q-F et al (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002

    Article  Google Scholar 

  10. Huang Z, Meng G, Huang Q et al (2010) Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv Mater 22:4136–4139

    Article  Google Scholar 

  11. Kang T, Yoo SM, Yoon I et al (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193

    Article  Google Scholar 

  12. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599

    Article  Google Scholar 

  13. Abu Hatab NA Oran JM Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2:377–385

    Article  Google Scholar 

  14. Ou FS, Hu M, Naumov I et al (2011) Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett 11:2538–2542

    Article  Google Scholar 

  15. Jin ML, Pully V, Otto C et al (2010) High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy. J Phys Chem C 114:21953–21959

    Article  Google Scholar 

  16. Crozier KB, Zhu WQ, Banaee MG et al (2011) Lithographically fabricated optical antennas with gaps well below 10 nm. Small 7:1761–1766

    Article  Google Scholar 

  17. Wang W, Li Z, Gu B et al (2009) Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering. ACS Nano 3:3493–3496

    Article  Google Scholar 

  18. Lu L, Sun G, Zhang H et al (2004) Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. J Mater Chem 14:1005–1009

    Article  Google Scholar 

  19. Alvarez-Puebla RA, Agarwal A, Manna P et al (2011) Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 108:8157–8161

    Article  Google Scholar 

  20. Bryant GW, Garcia De Abajo FJ, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8:631–636

    Article  Google Scholar 

  21. Wu WG, Qian C, Ni C et al (2011) Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering. Small 7:1801–1806

    Article  Google Scholar 

  22. Sweeney A, Jiggins C, Johnsen S (2003) Insect communication: Polarized light as a butterfly mating signal. Nature 423:31–32

    Article  Google Scholar 

  23. Morehouse NI, Vukusic P, Rutowski R (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc Roy Soc Lond B 274:359–366

    Article  Google Scholar 

  24. Tan YW, Gu JJ, Xu LH et al (2012) High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv Funct Mater 22:1578–1585

    Article  Google Scholar 

  25. Vukusic P, Sambles JR, Lawrence CR et al (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc Roy Soc Lond B 266:1403–1411

    Article  Google Scholar 

  26. Van Hooijdonk E, Barthou C, Vigneron JP et al (2011) Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae). J Nanophoton 5:053525

    Article  Google Scholar 

  27. Zamuner M, Talaga D, Deiss F et al (2009) Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mater 19:3129–3135

    Article  Google Scholar 

  28. Yu Q, Braswell S, Christin B et al (2010) Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21:355301

    Article  Google Scholar 

  29. Shibu ES, Kimura K, Pradeep T (2009) Gold nanoparticle superlattices: Novel surface ­enhanced Raman scattering active substrates. Chem Mater 21:3773–3781

    Article  Google Scholar 

  30. Mo Y, Mörke I, Wachter P (1984) The influence of surface roughness on the Raman scattering of pyridine on copper and silver surfaces. Solid State Comm 50:829–832

    Article  Google Scholar 

  31. Tessier PM, Velev OD, Kalambur AT et al (2000) Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J Am Chem Soc 122:9554–9555

    Article  Google Scholar 

  32. Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  33. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  Google Scholar 

  34. Farjadpour A, Roundy D, Rodriguez A et al (2006) Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt Lett 31:2972–2974

    Article  Google Scholar 

  35. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776–2788

    Article  Google Scholar 

  36. Oh J, Hart R, Capurro J et al (2009) Comprehensive analysis of particle motion under non-uniform ac electric fields in a microchannel. Lab on a Chip 9:62–78

    Article  Google Scholar 

  37. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77:075401

    Article  Google Scholar 

  38. Im H, Bantz KC, Lindquist NC et al (2010) Vertically oriented sub-10-nm plasmonic ­nanogap arrays. Nano Lett 10:2231–2236

    Article  Google Scholar 

  39. Halas NJ, Lal S, Chang W-S et al (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  Google Scholar 

  40. Caldwell JD, Glembocki O, Bezares FJ et al (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5:4046–4055

    Article  Google Scholar 

  41. Deng XG, Braun GB, Liu S et al (2010) Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett 10:1780–1786

    Article  Google Scholar 

  42. Liberman V, Yilmaz C, Bloomstein TM et al (2010) A nanoparticle convective directed ­assembly process for the fabrication of periodic surface enhanced Raman spectroscopy ­substrates. Adv Mater 22:4298–4302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Jiajun Gu, Di Zhang, and Yongwen Tan

About this chapter

Cite this chapter

Gu, J., Zhang, D., Tan, Y. (2015). Surface-Enhanced Raman Scattering (SERS) Mechanisms of Metal Scale Replicas. In: Metallic Butterfly Wing Scales. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12535-0_5

Download citation

Publish with us

Policies and ethics