Skip to main content

Metal Scale Replicas Prepared via Electroless Deposition

  • Chapter
  • First Online:
Metallic Butterfly Wing Scales

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 559 Accesses

Abstract

Direct deposition methods include physical vapor deposition (PVD), chemical vapor deposition (CVD), and electroplating or electroless plating, etc. PVD describes a variety of vacuum deposition methods used to deposit thin films onto a workpiece surface by the condensation of a vaporized material. These methods (e.g., magnetron sputtering and plasma bombardment) involve purely physical processes. In comparison, CVD is based on chemical reactions happening at the surface to be coated. However, the line-of-sight nature of both PVD and CVD prevents a complete replication of original 3D biomorphologies. This shading effect can be avoided by metal plating conducted in liquid environments. Electroplating uses electrical current to reduce dissolved metal cations and can form a coherent metal coating on a conductive substrate. However, since biotemplates are usually nonconductive, it is unsuitable to the replication of biostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinshan H, Solanki R, Mcandrew J (2002) Characteristics of copper films produced via atomic layer deposition. J Mater Res 17:2394–2398

    Article  Google Scholar 

  2. Duffy J, Pearson L, Paunovic M (1983) The effect of pH on electroless copper deposition. J Electrochem Soc 130:876–880

    Article  Google Scholar 

  3. Rossnagel SM (1995) Directional and preferential sputtering-based physical vapor deposition. Th Sol Films 263:1–12

    Article  Google Scholar 

  4. Métraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415

    Article  Google Scholar 

  5. Nickel U, Zu Castell A, Pöppl K et al (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16:9087–9091

    Article  Google Scholar 

  6. Gu X, Nie C, Lai Y et al (2006) Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater Chem Phys 96:217–222

    Article  Google Scholar 

  7. Adhikari B, Banerjee A (2010) Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg-II sensing. Chem Mater 22:4364–4371

    Article  Google Scholar 

  8. Chen JH, Lee YC, Tang MT et al (2007) X-ray tomography and chemical imaging within butterfly wing scales. AIP Conf Proc 879:1940–1943

    Article  Google Scholar 

  9. Tan Y, Gu J, Zang X et al (2011) Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew Chem Int Ed Engl 50:8307–8311

    Article  Google Scholar 

  10. Zhang W, Zhang D, Fan TX et al (2009) Novel photoanode structure templated from butterfly wing scales. Chem Mater 21:33–40

    Article  Google Scholar 

  11. Han J, Su HL, Zhang D et al (2009) Butterfly wings as natural photonic crystal scaffolds for controllable assembly of cds nanoparticles. J Mater Chem 19:8741–8746

    Article  Google Scholar 

  12. Anandhavelu S, Thambidurai S (2011) Preparation of chitosan-zinc oxide complex during chitin deacetylation. Carbohydr Polym 83:1565–1569

    Article  Google Scholar 

  13. Limam Z, Selmi S, Sadok S et al (2011) Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr J Biotechnol 10:640–647

    Google Scholar 

  14. Griffiths PR (2006) Introduction to the theory and instrumentation for vibrational spectroscopy. Wiley, Hoboken

    Google Scholar 

  15. Caldwell JD, Glembocki O, Bezares FJ et al (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5:4046–4055

    Article  Google Scholar 

  16. Chen Z, Zhan P, Wang ZL et al (2004) Two- and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv Mater 16:417–422

    Article  Google Scholar 

  17. Omura Y, Renbutsu E, Morimoto M et al (2003) Synthesis of new chitosan derivatives and combination with biodegradable polymer. Polym Adv Technol 14:35–39

    Article  Google Scholar 

  18. Zabetakis D, Dressick WJ (2009) Selective electroless metallization of patterned polymeric films for lithography applications. ACS Appl Mater Interfaces 1:4–25

    Article  Google Scholar 

  19. Renbutsu E, Okabe S, Omura Y et al (2007) Synthesis of UV-curable chitosan derivatives and palladium (II) adsorption behavior on their UV-exposed films. Carbohydr Polym 69:697–706

    Article  Google Scholar 

  20. Smoukov SK, Bishop KJM, Campbell CJ et al (2005) Freestanding three-dimensional copper foils prepared by electroless deposition on micropatterned gels. Adv Mater 17:751–755

    Article  Google Scholar 

  21. Renbutsu E, Okabe S, Omura Y et al (2008) Palladium adsorbing properties of UV-curable chitosan derivatives and surface analysis of chitosan-containing paint. Inter J Biol Macromol 43:62–68

    Article  Google Scholar 

  22. Bao ZH, Weatherspoon MR, Shian S et al (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175

    Article  Google Scholar 

  23. Chen Y, Zang XN, Gu JJ et al (2011) ZnO single butterfly wing scales: synthesis and spatial optical anisotropy. J Mater Chem 21:6140–6143

    Article  Google Scholar 

  24. Liu XY, Zhu SM, Zhang D et al (2010) Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting. Mater Lett 64:2745–2747

    Article  Google Scholar 

  25. Song F, Su HL, Chen JJ et al (2011) Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea). Appl Phy Lett 99:163705

    Article  Google Scholar 

  26. Zhu S, Liu X, Chen Z et al (2010) Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors. J Mater Chem 20:9126–9132

    Article  Google Scholar 

  27. Peng WH, Zhu SM, Wang WL et al (2012) 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Adv Funct Mater 22:2072–2080

    Article  Google Scholar 

  28. Wang J, Chen X, Wang G et al (2002) Melting behavior in ultrathin metallic nanowires. Phys Rev B 66:085408

    Article  Google Scholar 

  29. Lisiecki I, Sack-Kongehl H, Weiss K et al (2000) Annealing process of anisotropic copper nanocrystals. Langmuir 16:8807–8808

    Article  Google Scholar 

  30. Dippel M, Maier A, Gimple V et al (2001) Size-dependent melting of self-assembled indium nanostructures. Phys Rev Lett 87:095505

    Article  Google Scholar 

  31. Link S, Wang ZL, El-Sayed MA (2000) How does a gold nanorod melt? J Phys Chem B 104:7867–7870

    Article  Google Scholar 

  32. Vincendon M (1997) Regenerated chitin from phosphoric acid solutions. Carbohydr Polym 32:233–237

    Article  Google Scholar 

  33. Lakhtakia A, Martin-Palma RJ, Motyka MA et al (2009) Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates. Bioinspir Biomim 4:034001

    Article  Google Scholar 

  34. Weatherspoon MR, Cai Y, Crne M et al (2008) 3D rutile titania-based structures with Morpho butterfly wing scale morphologies. Angew Chem Int Ed Engl 47:7921–7923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Jiajun Gu, Di Zhang, and Yongwen Tan

About this chapter

Cite this chapter

Gu, J., Zhang, D., Tan, Y. (2015). Metal Scale Replicas Prepared via Electroless Deposition. In: Metallic Butterfly Wing Scales. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12535-0_3

Download citation

Publish with us

Policies and ethics