Skip to main content

Background

  • Chapter
  • First Online:
Metallic Butterfly Wing Scales

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 536 Accesses

Abstract

In the twentieth century, the understandings of materials’ properties deepened to an electronic level. Present technologies have realized the control of the electron motion in media, based on the advances in semiconductor physics. This in turn leads to a rapid development in electronics and information technologies (Moore’s law). However, an information processor needs high speed and capacity while the capacity of an electronic device is limited. As Moore’s law might be approaching its limits, scientists are seeking for alternative strategies to satisfy the rapidly increased application demands. One of the most promising solutions is to use photons as information carriers to replace electrons. Over the past decades, great efforts have been spent in seeking ways to effectively control light propagation within materials. These studies have opened up a new research field; nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Google Scholar 

  2. Arpin KA, Mihi A, Johnson HT et al (2010) Multidimensional architectures for functional optical devices. Adv Mater 22:1084–1101

    Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Google Scholar 

  4. Pyayt AL, Wiley B, Xia Y et al (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nat Nano 3:660–665

    Google Scholar 

  5. Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Google Scholar 

  6. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Google Scholar 

  7. Wang W, Yang Q, Fan F et al (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11:1603–1608

    Google Scholar 

  8. Sharma B, Frontiera RR, Henry A-I et al (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Google Scholar 

  9. Henzie J, Lee J, Lee MH et al (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165

    Google Scholar 

  10. Fang Y, Li Z, Huang Y et al (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950–1954

    Google Scholar 

  11. Noginov MA, Zhu G, Belgrave AM et al (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Google Scholar 

  12. Park S, Won Hahn J (2009) Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material. Opt Express 17:20203–20210

    Google Scholar 

  13. Pala RA, White J, Barnard E et al (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509

    Google Scholar 

  14. Falk AL, Koppens FHL, Yu CL et al (2009) Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys 5:475–479

    Google Scholar 

  15. Kawata S, Ono A, Verma P (2008) Subwavelength colour imaging with a metallic nanolens. Nat Photon 2:438–442

    Google Scholar 

  16. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Google Scholar 

  17. Bozhevolnyi SI, Volkov VS, Devaux E et al (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Google Scholar 

  18. Benson O (2011) Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480:193–199

    Google Scholar 

  19. Chen QW, Li R, Zhang H et al (2011) Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline. Analyst 136:2527–2532

    Google Scholar 

  20. Hu JA, Zhang CY (2010) Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy. Anal Chem 82:8991–8997

    Google Scholar 

  21. Spencer KM, Sylvia JM, Marren PJ et al (2004) Surface-enhanced Raman spectroscopy for homeland defense. P Soc Photo Opt Ins 5269:1–8

    Google Scholar 

  22. Zhou HB, Zhang ZP, Jiang CL et al (2011) Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Anal Chem 83:6913–6917

    Google Scholar 

  23. Schmuck C, Wich P, Kustner B et al (2007) Direct and label-free detection of solid-phase-bound compounds by using surface-enhanced Raman scattering microspectroscopy. Angew Chem Int Ed 46:4786–4789

    Google Scholar 

  24. Rana V, Canamares MV, Kubic T et al (2011) Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J Forensic Sci 56:200–207

    Google Scholar 

  25. Fu Y, Lakowicz JR (2006) Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. Anal Chem 78:6238–6245

    Google Scholar 

  26. Brouard D, Viger ML, Bracamonte AG et al (2011) Label-free biosensing based on multilayer fluorescent nanocomposites and a cationic polymeric transducer. ACS Nano 5:1888–1896

    Google Scholar 

  27. Peng H-I, Strohsahl CM, Leach KE et al (2009) Label-free DNA detection on nanostructured ag surfaces. ACS Nano 3:2265–2273

    Google Scholar 

  28. Staiano M, Matveeva EG, Rossi M et al (2009) Nanostructured silver-based surfaces: new emergent methodologies for an easy detection of analytes. ACS Appl Mater Interfaces 1:2909–2916

    Google Scholar 

  29. Hall WP, Anker JN, Lin Y et al (2008) A calcium-modulated plasmonic switch. J Am Chem Soc 130:5836–5837

    Google Scholar 

  30. Valentine J, Zhang S, Zentgraf T et al (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Google Scholar 

  31. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Google Scholar 

  32. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Google Scholar 

  33. Smith DR, Pendry JB, Wiltshire MC (2004) Metamaterials and negative refractive index. Science 305:788–792

    Google Scholar 

  34. Shalaev VM (2008) Transforming light. Science 322:384–386

    Google Scholar 

  35. Neutens P, Van Dorpe P, De Vlaminck I et al (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photon 3:283–286

    Google Scholar 

  36. Srituravanich W, Pan L, Wang Y et al (2008) Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotech 3:733–737

    Google Scholar 

  37. Kim S, Jin J, Kim Y-J et al (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Google Scholar 

  38. Challener WA, Peng C, Itagi AV et al (2009) Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3:220–224

    Google Scholar 

  39. Thomann I, Pinaud BA, Chen Z et al (2011) Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 11:3440–3446

    Google Scholar 

  40. Au L, Zheng D, Zhou F et al (2008) A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2:1645–1652

    Google Scholar 

  41. Hatab NA, Hsueh CH, Gaddis AL et al (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10:4952–4955

    Google Scholar 

  42. Bao ZH, Ernst EM, Yoo S et al (2009) Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Adv Mater 21:474–478

    Google Scholar 

  43. Lim DK, Jeon KS, Hwang JH et al (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6:452–460

    Google Scholar 

  44. Xia X, Zeng J, Mcdearmon B et al (2011) Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew Chem Int Ed 50:12542–12546

    Google Scholar 

  45. Liberman V, Yilmaz C, Bloomstein TM et al (2010) A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates. Adv Mater 22:4298–4302

    Google Scholar 

  46. Vukusic P, Sambles JR, Lawrence CR (2000) Structural colour-colour mixing in wing scales of a butterfly. Nature 404:457–457

    Google Scholar 

  47. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Google Scholar 

  48. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353

    Google Scholar 

  49. Parker AR (2000) 515 million years of structural colour. J Opt A Pure Appl Op 2:R15–R28

    Google Scholar 

  50. Parker AR (2004) A vision for natural photonics. Philos T Roy Soc A 362:2709–2720

    Google Scholar 

  51. Biro LP, Vigneron JP (2011) Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photonics Rev 5:27–51

    Google Scholar 

  52. Fan TX, Chow SK, Di Z (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54:542–659

    Google Scholar 

  53. Whitney HM, Kolle M, Andrew P et al (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133

    Google Scholar 

  54. Zhang GS, Huang ZQ (2010) Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum. Opt Express 18:13361–13367

    Google Scholar 

  55. Tan T, Wong D, Lee P (2004) Iridescence of a shell of mollusk Haliotis glabra. Opt Express 12:4847–4854

    Google Scholar 

  56. Huang J, Wang X, Wang ZL (2008) Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology 19:025602

    Google Scholar 

  57. Parker AR, Welch VL, Driver D et al (2003) Structural colour-opal analogue discovered in a weevil. Nature 426:786–787

    Google Scholar 

  58. Smith GS (2009) Structural color of Morpho butterflies. Am J Phys 77:1010–1019

    Google Scholar 

  59. Meldrum FC, Seshadri R (2000) Porous gold structures through templating by echinoid skeletal plates. Chem Commun 29–30

    Google Scholar 

  60. Ha YH, Vaia RA, Lynn WF et al (2004) Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv Mater 16:1091–1094

    Google Scholar 

  61. Bao ZH, Weatherspoon MR, Shian S et al (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175

    Google Scholar 

  62. Galusha JW, Jorgensen MR, Bartl MH (2010) Diamond-structured titania photonic-bandgap crystals from biological templates. Adv Mater 22:107–110

    Google Scholar 

  63. Payne EK, Rosi NL, Xue C et al (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew Chem Int Ed 44:5064–5067

    Google Scholar 

  64. Zhou H, Fan TX, Li XF et al (2009) Bio-inspired bottom-up assembly of diatom-templated ordered porous metal chalcogenide meso/nanostructures. Eur J Inorg Chem 2009:211–215

    Google Scholar 

  65. Losic D, Mitchell JG, Voelcker NH (2005) Complex gold nanostructures derived by templating from diatom frustules. Chem Commun 4905–4907

    Google Scholar 

  66. Losic D, Triani G, Evans PJ et al (2006) Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J Mater Chem 16:4029–4034

    Google Scholar 

  67. Holmes SM, Graniel-Garcia BE, Foran P et al (2006) A novel porous carbon based on diatomaceous earth. Chem Commun 2662–2663

    Google Scholar 

  68. Weatherspoon MR, Dickerson MB, Wang G et al (2007) Thin, conformal, and continuous SnO2 coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layer alkoxide deposition. Angew Chem Int Ed 46:5724–5727

    Google Scholar 

  69. Cai Y, Dickerson MB, Haluska MS et al (2007) Manganese-doped zinc orthosilicate-bearing phosphor microparticles with controlled three-dimensional shapes derived from diatom frustules. J Am Ceram Soc 90:1304–1308

    Google Scholar 

  70. Liu Z, Fan T, Zhou H et al (2007) Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template. Bioinspir Biomim 2:30–35

    Google Scholar 

  71. Shian S, Cai Y, Weatherspoon MR et al (2006) Three-dimensional assemblies of zirconia nanocrystals via shape-preserving reactive conversion of diatom microshells. J Am Ceram Soc 89:694–698

    Google Scholar 

  72. Cai Y, Sandhage KH (2005) Zn2SiO4-coated microparticles with biologically-controlled 3D shapes. Phys Status Solidi A 202:R105–R107

    Google Scholar 

  73. Zhou H, Fan T, Ding J et al (2012) Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. Opt Express 20(Suppl 2):A340–A350

    Google Scholar 

  74. Zhang TJ, Wang W, Zhang DY et al (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160

    Google Scholar 

  75. Alloyeau D, Stephanidis B, Zhao X et al (2011) Biotemplated synthesis of metallic nanoclusters organized in tunable two-dimensional superlattices. J Phys Chem C 115:20926–20930

    Google Scholar 

  76. Zhou H, Fan T, Zhang D et al (2007) Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem Mater 19:2144–2146

    Google Scholar 

  77. Zhou H, Fan T, Han T et al (2009) Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 20:085603

    Google Scholar 

  78. Li X, Fan T, Zhou H et al (2009) Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates. Adv Funct Mater 19:45–56

    Google Scholar 

  79. Zhou H, Li X, Fan T et al (2010) Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv Mater 22:951–956

    Google Scholar 

  80. Song F, Su H, Han J et al (2012) Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J Phys Chem C 116:10274–10281

    Google Scholar 

  81. Jorgensen MR, Bartl MH (2011) Biotemplating routes to three-dimensional photonic crystals. J Mater Chem 21:10583–10591

    Google Scholar 

  82. Sweeney A, Jiggins C, Johnsen S (2003) Insect communication: Polarized light as a butterfly mating signal. Nature 423:31–32

    Google Scholar 

  83. Potyrailo RA, Ghiradella H, Vertiatchikh A et al (2007) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photon 1:123–128

    Google Scholar 

  84. Vukusic P, Sambles JR, Lawrence CR (2004) Structurally assisted blackness in butterfly scales. Proc Biol Sci Roy Soc 271 (Suppl 4):4S237–S239

    Google Scholar 

  85. Vukusic P, Hooper I (2005) Directionally controlled fluorescence emission in butterflies. Science 310:1151–1151

    Google Scholar 

  86. Tan Y, Gu J, Zang X et al (2011) Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew Chem Int Ed 50:8307–8311

    Google Scholar 

  87. Tan YW, Gu JJ, Xu LH et al (2012) High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv Funct Mater 22:1578–1585

    Google Scholar 

  88. Walter B (1895) Die oberflaehen-oder sehillerfarben. F. Vieweg und Sohn, Braunsehweig

    Google Scholar 

  89. Merritt E (1925) A spectrophotometric study of certain cases of structural color. J Opt Soc Am 11:93–97

    Google Scholar 

  90. Vukusic P, Sambles JR, Lawrence CR et al (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc Roy Soc Lond B 266:1403–1411

    Google Scholar 

  91. Yoshioka S, Kinoshita S (2006) Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance. J Opt Soc Am A 23:134–141

    Google Scholar 

  92. Pris AD, Utturkar Y, Surman C et al (2012) Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat Photon 6:195–200

    Google Scholar 

  93. Biro LP, Balint Z, Kertesz K et al (2003) Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair. Phys Rev E 67:021907

    Google Scholar 

  94. Saranathan V, Osuji CO, Mochrie SGJ et al (2010) Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci USA 107:11676–11681

    Google Scholar 

  95. Huang J, Wang X, Wang ZL (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett 6:2325–2331

    Google Scholar 

  96. Watanabe K, Hoshino T, Kanda K et al (2005) Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J Appl Phys 2(44):L48–L50

    Google Scholar 

  97. Kustandi TS, Low HY, Teng JH et al (2009) Mimicking domino-like photonic nanostructures on butterfly wings. Small 5:574–578

    Google Scholar 

  98. Saison T, Peroz C, Chauveau V et al (2008) Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Bioinspir Biomim 3:046004

    Google Scholar 

  99. Saito A, Miyamura Y, Ishikawa Y et al (2009) Reproduction, mass-production, and control of the Morpho-butterfly’s blue. In: Suleski TJ, Schoenfeld WV, (eds) Advanced fabrication technologies for micro/nanooptics and photonics II. SPIE, p 720506. Bellingham, USA

    Google Scholar 

  100. Chung K, Yu S, Heo C-J et al (2012) Angle-independent reflectors: flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv Mater 24:2366–2366

    Google Scholar 

  101. Cook G, Timms PL, Goltner-Spickermann C (2003) Exact replication of biological structures by chemical vapor deposition of silica. Angew Chem Int Ed 42:557–559

    Google Scholar 

  102. Lakhtakia A, Martin-Palma RJ, Motyka MA et al (2009) Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates. Bioinspir Biomim 4:034001

    Google Scholar 

  103. Weatherspoon MR, Cai Y, Crne M et al (2008) 3D rutile titania-based structures with Morpho butterfly wing scale morphologies. Angew Chem Int Ed 47:7921–7923

    Google Scholar 

  104. Vernon JP, Fang YN, Cai Y et al (2010) Morphology-preserving conversion of a 3D bioorganic template into a nanocrystalline multicomponent oxide compound. Angew Chem Int Ed 49:7765–7768

    Google Scholar 

  105. Zhang W, Zhang D, Fan TX et al (2006) Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspir Biomim 1:89–95

    Google Scholar 

  106. Zhang W, Zhang D, Fan TX et al (2009) Novel photoanode structure templated from butterfly wing scales. Chem Mater 21:33–40

    Google Scholar 

  107. Chen Y, Gu JJ, Zhang D et al (2011) Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales. J Mater Chem 21:15237–15243

    Google Scholar 

  108. Peng WH, Zhu SM, Wang WL et al (2012) 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Adv Funct Mater 22:2072–2080

    Google Scholar 

  109. Zhu S, Liu X, Chen Z et al (2010) Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors. J Mater Chem 20:9126–9132

    Google Scholar 

  110. Song F, Su HL, Chen JJ et al (2011) Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea). Appl Phy Lett 99:163705

    Google Scholar 

  111. Song F, Su H, Han J et al (2009) Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings. Nanotechnology 20:495502

    Google Scholar 

  112. Silver J, Withnall R, Ireland TG et al (2005) Novel nano-structured phosphor materials cast from natural Morpho butterfly scales. J Mod Optic 52:999–1007

    Google Scholar 

  113. Ji-Zhong Z, Zhong-Ze G, Hai-Hua C et al (2006) Inverse Mopho butterfly: a new approach to photonic crystal. J Nanosci Nanotech 6:1173–1176

    Google Scholar 

  114. Xu Z, Yu K, Li B et al (2011) Optical properties of SiO2 and ZnO nanostructured replicas of butterfly wing scales. Nano Res 4:737–745

    Google Scholar 

  115. Kang SH, Tai TY, Fang TH (2010) Replication of butterfly wing microstructures using molding lithography. Curr Appl Phys 10:625–630

    Google Scholar 

  116. Li B, Zhou J, Zong R et al (2006) Ordered ceramic microstructures from butterfly bio-template. J Am Ceram Soc 89:2298–2300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Jiajun Gu, Di Zhang, and Yongwen Tan

About this chapter

Cite this chapter

Gu, J., Zhang, D., Tan, Y. (2015). Background. In: Metallic Butterfly Wing Scales. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12535-0_1

Download citation

Publish with us

Policies and ethics