We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Special Channels

  • Chapter
  • First Online:
Transmitting and Gaining Data

Abstract

Coding theorem and weak converse of the coding theorem are proved for averaged semicontinuous stationary channels and for almost periodic discrete channels whose phases are statistically known. Explicit formulas for the capacities are given. The strong converses of the coding theorems do not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ahlswede, Certain Results in Coding Theory for Compound Channels, in Proceedings of the Colloquium Information Theory, (Debrecen (Hungary), 1967), pp. 35–60

    Google Scholar 

  2. R. Ahlswede, Beiträge zur Shannonschen Informationstheorie im Falle nichtstationärer Kanäle. Z. Wahrscheinlichkeitstheorie und verw. Geb. 10, 1–42 (1968)

    Google Scholar 

  3. R. Ahlswede, The weak capacity of averaged channels. Z. Wahrscheinlichkeitstheorie und verw. Geb. 11, 61–73 (1968)

    Google Scholar 

  4. R. Ahlswede, Channels with arbitrary varying channel probability functions in the presence of feedback. Z. Wahrscheinlichkeitstheorie und verw. Geb. 25, 239–252 (1973)

    Google Scholar 

  5. R. Ahlswede, Channel capacities for list codes. J. Appl. Probab. l0, 824–836 (1973)

    Article  MathSciNet  Google Scholar 

  6. R. Ahlswede, On Set Coverings in Cartesian Product Spaces, Ergänzungsreihe 92-005, SFB 343 Diskrete Strukturen in der Mathematik (Universität Bielefeld, 1992)

    Google Scholar 

  7. R. Ahlswede, A method of coding and an application to arbitrarily varying channels. J. Comb. Inf. Syst. Sci. 5(1), 10–35 (1980)

    MathSciNet  Google Scholar 

  8. R. Ahlswede, N. Cai, Z. Zhang, Erasure, List and Detection Zero-Error Capacities for Low Noise and a Relation to Identification, Preprint 93-068, SFB 343 Diskrete Strukturen in der Mathematik. Universität Bielefeld. IEEE Trans. Inf. Theory 42(1), 55–62 (1996)

    Google Scholar 

  9. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Ahlswede, G. Simonyi, Reusable memories in the light of the old varying and a new outputwise varying channel theory. IEEE Trans. Inf. Theory 37(4), 1143–1150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Ahlswede, J. Wolfowitz, Correlated decoding for channels with arbitrarily varying channel probability functions. Inf. Control 14, 457–473 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Ahlswede, J. Wolfowitz, The Structure of Capacity Functions for Compound Channels, in Proceedings of the International Symposium on Probability and Information Theory, McMaster University, Canada, April 1968, pp. 12–54 (1969)

    Google Scholar 

  13. R. Ahlswede, J-p. Ye, Z. Zhang, Creating order in sequence spaces with simple machines. Inf. Comput. 89(1), 47–94 (1990)

    Google Scholar 

  14. R. Ahlswede, Z. Zhang, Coding for write efficient memories. Inf. Comput. 83(1), 80–97 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Arimoto, On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory IT–19, 357–359 (1973)

    Google Scholar 

  16. D. Blackwell, L. Breiman, A.J. Thomasian, Proof of Shannon’s transmission theorem for finite-state indecomposable channels. Ann. Math. Stat. 29, 1209–1220 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Blackwell, L. Breiman, A.J. Thomasian, The capacity of a class of channels. Ann. Math. Stat. 30(4), 1229–1241 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Blackwell, L. Breiman, A.J. Thomasian, The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Blokhuis, On the Sperner capacity of the cyclic triangle. J. Algebraic Comb. 2, 123–124 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. T.M. Cover, B. Gopinath, Open Problems in Communication and Computation (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  21. H.G. Ding, On the information stability of a sequence of channels. Theor. Probab. Appl. 7, 258–269 (1962)

    Article  Google Scholar 

  22. R.L. Dobrushin, Arbeiten zur Informationstheorie IV (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963)

    MATH  Google Scholar 

  23. R.L. Dobrushin, Individual methods for transmission of information for discrete channels without memory and messages with independent components. Doklady Akad. Nauk SSSR 148, 1245–48 (1963)

    Google Scholar 

  24. R.L. Dobrushin, Unified methods for the transmission of information: the general case. Doklady Akad. Nauk SSSR 149, 16–19 (1963)

    Google Scholar 

  25. R.G. Gallager, in Information Theory, Chapter 4 of the Mathematics of Physics and Chemistry, ed. by H. Margenan, G.M. Murphy (Van Nostrand, Princeton, 1976)

    Google Scholar 

  26. R.G. Gallager, Information Theory and Reliable Communication (Wiley, New York, 1968)

    MATH  Google Scholar 

  27. L. Gargano, J. Körner, U. Vaccaro, Sperner capacities. Graphs Combin. 9, 31–46 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Hall, On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)

    Google Scholar 

  29. K. Jacobs, Almost Periodic Channels (Aarhus, Colloquium on Combinatorial Methods in Probability Theory, 1962), pp. 118–126

    Google Scholar 

  30. S. Kakutani, A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–458 (1941)

    Article  MathSciNet  Google Scholar 

  31. R.S. Kennedy, Finite State Binary Symmetric Channels, Sc.D. Thesis, Department of Electrical Engineering, MIT Cambridge, Mass (1963)

    Google Scholar 

  32. H. Kesten, Some remarks on the capacity of compound channels in the semicontinuous case. Inf. Control 4, 169–184 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Kiefer, J. Wolfowitz, Channels with arbitrarily varying channel probability functions. Inf. Control 5, 169–184 (1962)

    Article  MathSciNet  Google Scholar 

  34. J.C. Kieffer, A lower bound on the probability of decoding error for the finite-state channel. IEEE Trans. Inf. Theory 20, 549–551 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  35. D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Annalen 77, 453–465 (1916)

    Article  MATH  Google Scholar 

  36. L. Lovász, M.D. Plummer, Matching Theory, (North-Holland, 1986)

    Google Scholar 

  37. E.C. van der Meulen, Random coding theorems for the general discrete memoryless broadcast channel. IEEE Trans. Inf. Theory IT 21, 180–190 (1975)

    Article  Google Scholar 

  38. M.S. Pinsker, Capacity region of noiseless broadcast channels, (in Russian). Problemi Peredachi Informatsii 14(2), 28–32 (1978)

    MATH  MathSciNet  Google Scholar 

  39. C.E. Shannon, On the Zero-Error Capacity of the Noisy Channel, Transactions on PGIT, IRE, pp. 8–19, Sept 1956

    Google Scholar 

  40. C.E. Shannon, Channels with side information at the transmitter. IBMJ Res. Dev. 2(4), 289–293 (1958)

    Article  MathSciNet  Google Scholar 

  41. A.J. Thomasian, A finite criterion for indecomposable channels. Ann. Math. Stat. 34, 337–338 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Wolfowitz, The coding of messages subject to chance errors. Illinois J. Math. 1, 591–606 (1957)

    MATH  MathSciNet  Google Scholar 

  43. J. Wolfowitz, Simultaneous channels. Arch. Rat. Mech. Anal. 4(4), 371–386 (1960)

    MATH  MathSciNet  Google Scholar 

  44. J. Wolfowitz, Channels without capacity. Inf. Control 6(1), 49–54 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  45. J. Wolfowitz, Coding Theorems of Information Theory, 1st edn, 1961; 2nd edn, 1964; 3rd edn, 1978 (Springer, Berlin)

    Google Scholar 

  46. J. Wolfowitz, Memory Increases Capacity in Colloquium on Information Theory (Kossuth Lajos University, Debrecen, Sept 1967), pp. 19–24

    Google Scholar 

  47. H. Yudkin, On the Exponential Error Bound and Capacity for Finite State Channels, in International Symposium on Information Theory, (San Remo, Italy, 1967)

    Google Scholar 

Further Reading

  1. R. Ahlswede, Coloring Hypergraphs: A New Approach to Multi-user Source Coding Part I, J. Comb, Inf. Syst. Sc. 4, 76–115, (1979); Part II, 5, 220–268 (1980)

    Google Scholar 

  2. R. Ahlswede, N. Cai, On extremal set partitions in Cartesian product spaces. Comb. Probab. Comput. 2, 211–220 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Ahlswede, N. Cai, Cross Disjoint Pairs of Clouds in the Interval Lattice, Preprint 93-038, SFB 343 Diskrete Sturkturen in der Mathematik, ed. by R.L. Graham, J. Nesetril, The Mathematics of Paul Erd"os; Algorithms and Combinatorics B, (Universität Bielefeld, Springer, Berlin, 1996), pp. 155–164

    Google Scholar 

  4. R. Ahlswede, N. Cai, Information and control: matching channels. IEEE Trans. Inf. Theory 44(2), 542–563 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Ahlswede, G. Dueck, Good codes can be produced by a few permutations. IEEE Trans. Inf. Theory IT–28(3), 430–443 (1982)

    Google Scholar 

  6. R. Ahlswede, G. Dueck, Identification in the presence of feedback—a discovery of new capacity formulas. IEEE Trans. Inf. Theory 35(1), 30–39 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Ahlswede, A. Kaspi, Optimal coding strategies for certain permuting channels. IEEE Trans. Inf. Theory IT–33(3), 310–314 (1987)

    Google Scholar 

  8. I. Anderson, Combinatorics of Finite Sets (Claredon Press, Oxford, 1987)

    MATH  Google Scholar 

  9. U. Augustin, Gedächtnisfreie Kanäle für diskrete Zeit. Zeitschrift f. Wahrscheinlichkeitstheorie u. verw. Geb. 6, 10–61 (1966)

    Google Scholar 

  10. T.M. Cover, Broadcast channels. IEEE Trans. Inf. Theory IT 18, 2–14 (1972)

    Article  MathSciNet  Google Scholar 

  11. I. Csiszár, J. K"orner, Information Theory: Coding Theorems for Discrete Memoryless Systems (Academic Press, New York, 1981)

    MATH  Google Scholar 

  12. K. Kobayashi, Combinatorial structure and capacity of the permuting relay channel. IEEE Trans. Inf. Theory 33(6), 813–826 (1987)

    Article  MATH  Google Scholar 

  13. C.E. Shannon, Two-way Communication Channels, in Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, (University of California Press, Berkeley and Los Angeles), pp. 611–644 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Deppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahlswede, R., Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (2015). Special Channels. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Transmitting and Gaining Data. Foundations in Signal Processing, Communications and Networking, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-12523-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12523-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12522-0

  • Online ISBN: 978-3-319-12523-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics