Skip to main content

Vertebral Column Localization, Labeling, and Segmentation

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

The vertebral column consists of interconnected bone structures that extend from the neck down to the pelvis. In addition to its crucial functionality in spinal cord protection, it provides the necessary flexibility and support for the whole body. Worldwide interest in spine related research has been increasing due to the widely spread of related abnormalities in the developed countries which accounts for over $100 billion annually in the diagnosis, treatment, and associated loss of wages. Our specific interest in this chapter is in the medical image analysis of the vertebral column. In this chapter, we aim at providing a broader review of the available literature in vertebral column image analysis. Moreover, we focus on providing an understanding of the localization, labeling, and segmentation problems for the various vertebral column structures from the available medical imaging modalities. Additionally, we describe the general challenges facing the various solutions for these problems. Our taxonomy is based on the target imaging modality to simplify the understanding of the broad research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Helo S, Alomari R, Chaudhary V, Al-Zoubi M (2011) Segmentation of lumbar vertebrae from clinical CT using active shape models and GVF-snake. In: Annual international conference of the IEEE, Engineering in Medicine and Biology Society, EMBC 2011, pp 8033–8036. doi:10.1109/IEMBS.2011.6091981

  2. Al-Helo S, Alomari R, Ghosh S, Chaudhary V, Dhillon G, Al-Zoubi M, Hiary H, Hamtini T (2013) Compression fracture diagnosis in lumbar: a clinical CAD system. Int J Comput Assist Radiol Surg 8(3):461–469

    Article  Google Scholar 

  3. Alomari R, Corso J, Chaudhary V, Dhillon G (2010) Computer-aided diagnosis of lumbar disc pathology from clinical lower spine MRI. Int J Comput Aided Radiol Surg 5(3):287–293

    Article  Google Scholar 

  4. Alomari R, Corso J, Chaudhary V, Dhillon G (2010) Toward a clinical lumbar CAD: herniation diagnosis. Int J Comput Aided Radiol Surg 6(1):119–126

    Article  Google Scholar 

  5. Alomari R, Corso J, Chaudhary V (2011) Labeling of lumbar discs using both pixel- and object-level features with a two-level probabilistic model. IEEE Trans Med Imaging 30(1):1–10

    Article  Google Scholar 

  6. Alomari R, Chaudhary V, Corso J, Dhillon G (2013) Lumbar spine disc herniation diagnosis with a joint shape model. In: Proceedings of MICCAI computational spine imaging workshop, to appear

    Google Scholar 

  7. Archip N, Erard P, Egmont-Petersen M, Haefliger J, Germond J (2002) A knowledge-based approach to automatic detection of the spinal cord in CT images. Med Imaging, IEEE Trans 21(12):1504–1516

    Article  Google Scholar 

  8. Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337

    Article  Google Scholar 

  9. Bhole C, Kompalli S, Chaudhary V (2009) Context sensitive labeling of spinal structure in MR images. In: Proceedings of the SPIE medical imaging conference, vol 7260, pp 72603P–72603P–9

    Google Scholar 

  10. Booth S, Clausi DA (2001) Image segmentation using MRI vertebral cross-sections. In: Proceedings of Canadian conference on electrical and computer engineering, vol 2, pp 1303–1307

    Google Scholar 

  11. de Bruijne M, Nielsen M (2004) Image segmentation by shape particle filtering. In: Proceedings of 17th international conference on pattern recognition (ICPR), pp 722–725

    Google Scholar 

  12. Burnett S, Starkschall G, Stevens CW, Liao Z (2004) A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal. Med Phys 31(2):251–263

    Article  Google Scholar 

  13. Carballido-Gamio J, Belongie S, Majumdar S (2004) Normalized cuts in 3D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44

    Article  Google Scholar 

  14. Chamarthy P, Stanley RJ, Cizek G, Long R, Antani S, Thoma G (2004) Image analysis techniques for characterizing disc space narrowing in cervical vertebrae interfaces. Comput Med Imaging Graph 28:39–50

    Article  Google Scholar 

  15. Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, Prince JL (2013) Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. NeuroImage 83:1051–1062

    Article  Google Scholar 

  16. Cherukuri M, Stanley RJ, Long R, Antani S, Thoma G (2004) Anterior osteophyte discrimination in lumbar vertebrae using size-invariant features. Comput Med Imaging Graph 28(12):99–108

    Article  Google Scholar 

  17. Chevrefils C, Chriet F, Grimard G, Aubin C (2007) Watershed segmentation of intervertebral disk and spinal canal from MRI images. In: Lecture notes in computer science: image analysis and recognition, pp 1017–1027

    Google Scholar 

  18. Chevrefils C, Cheriet F, Aubin C, Grimard G (2009) Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. Inf Technol Biomed, IEEE Trans 13(4):608–620

    Article  Google Scholar 

  19. Chwialkowski MP, Shile PE, Peshock RM, Pfeifer D, Parkey RW (1989) Automated detection and evaluation of lumbar discs in MR images. In: Proceedings of IEEE EMBS

    Google Scholar 

  20. Cootes TF, Taylor CJ (2001) Statistical models of appearance for medical image analysis and computer vision. In: Proceedings of SPIE medical imaging

    Google Scholar 

  21. Coulon O, Hickman SJ, Parker GJ, Barker G, Miller D, Arridge S (2002) Quantification of spinal cord atrophy from magnetic resonance images via a B-spline active surface model. Magn Reson Med 47(6):1176–1185

    Article  Google Scholar 

  22. Crimi A, Ghosh A, Sporring J, Nielsen M (2009) Bayes estimation of shape model with application to vertebrae boundaries. In: Pluim J, Dawant BM (eds) Medical imaging 2009: image processing, vol 7259. SPIE, Bellingham, p 72590A

    Chapter  Google Scholar 

  23. Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Fardon DF, Milette P (2001) Nomenclature and classification of lumbar disc pathology. Spine 26(5):E93–E113

    Article  Google Scholar 

  25. Fowlkes C, Shan Q, Belongie S, Malik J (2002) Extracting global structure from gene expression profiles. In: Methods of microarray data analysis II. Springer, Berlin, pp 888–905

    Google Scholar 

  26. Ghebreab S, Smeulders A (2003) Strings: variational deformable models of multivariate ordered features. IEEE Trans Pattern Anal Mach Intell 25:1399–1410

    Article  Google Scholar 

  27. Ghebreab S, Smeulders A (2004) Combining strings and necklaces for interactive three-dimensional segmentation of spinal images using an integral deformable spine model. Biomed Eng IEEE Trans 51(10):1821–1829

    Article  Google Scholar 

  28. Ghebreab S, Pfluger PR, Smeulders AWM (2002) Necklaces: inhomogeneous and point-enhanced deformable models. Comput Vis Image Underst 86:96–117

    Article  MATH  Google Scholar 

  29. Ghosh S, Alomari R, Chaudhary V, Dhillon G (2011a) Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In: Proceedings of SPIE, vol 7963, pp 796303–796309

    Google Scholar 

  30. Ghosh S, Alomari R, Chaudhary V, Dhillon G (2011b) Composite features for automatic diagnosis of intervertebral disc herniation from lumbar MRI. In: Proceedings of the 33rd annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp 5068–5071

    Google Scholar 

  31. Ghosh S, Alomari R, Chaudhary V, Dhillon G (2011c) Computer-aided diagnosis for lumbar MRI using heterogeneous classifiers. In: Proceedings of the 8th IEEE international symposium on biomedical imaging: from nano to macro, ISBI, pp 1179–1182

    Google Scholar 

  32. Ghosh S, Malgireddy MR, Chaudhary V, Dhillon G (2012) A new approach to automatic disc localization in clinical lumbar MRI: combining machine learning with heuristics. In: Proceedings of IEEE international symposium on biomedical imaging, ISBI, pp 114–117

    Google Scholar 

  33. Ghosh S, Chaudhary V, Dhillon G (2013a) Exploring the utility of axial lumbar MRI for automatic diagnosis of intervertebral disc abnormalities. In: Proceedings of SPIE medical imaging

    Google Scholar 

  34. Ghosh S, Malgireddy MR, Chaudhary V, Dhillon G (2013b) A supervised approach towards segmentation of clinical MRI for automatic lumbar diagnosis. In: Proceedings of MICCAI computational spine imaging workshop, to appear

    Google Scholar 

  35. Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) Medical image computing and computer-assisted intervention MICCAI 2013, vol 8150., Lecture notes in computer scienceSpringer, Berlin, pp 262–270

    Chapter  Google Scholar 

  36. Hahn M (2001) New approach to evaluate rotation of cervical vertebrae. In: Medical imaging 2001: image processing, SPIE, vol 4322, pp 1696–1704

    Google Scholar 

  37. Hahn M, Beth T (2004) Balloon based vertebra separation in CT images. In: IEEE symposium on computer-based medical systems 2004, p 310

    Google Scholar 

  38. Hammon M, Dankerl P, Tsymbal A, Wels M, Kelm M, May M, Suehling M, Uder M, Cavallaro A (2013) Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography. Eur Radiol 23(7):1862–1870

    Article  Google Scholar 

  39. Hedlund L, Gallagher J (1988) Vertebral morphometry in diagnosis of spinal fractures. Bone and Mineral 5(1):59–67

    Article  Google Scholar 

  40. Hoad CL, Martel AL (2002) Segmentation of MR images for computer-assisted surgery of the lumbar spine. Phys Med Biol 47(19):3503–3517

    Article  Google Scholar 

  41. Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage 50(2):446–455

    Article  Google Scholar 

  42. Howe B, Gururajan A, Sari-Sarraf H, Long L (2004) Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: 6th IEEE southwest symposium on image analysis and interpretation 2004, pp 182–186

    Google Scholar 

  43. Huang S, Chu Y, Lai S, Novak CL (2009) Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. Med Imaging, IEEE Trans 28(10):1595–1605

    Article  Google Scholar 

  44. Jackson A, Sheppard S, Johnson A, Annesley D, Laitt R, Kassner A (1999) Combined fat- and water-suppressed MR imaging of orbital tumors. AJNR Am J Neuroradiol 20(10):1963–1969

    Google Scholar 

  45. Jäger F, Hornegger J, Schwab S, Janka R (2009) Computer-aided assessment of anomalies in the scoliotic spine in 3D MRI images. In: Proceedings of the 12th international conference on medical image computing and computer-assisted intervention: part II, MICCAI’09. Springer, Berlin, pp 819–826

    Google Scholar 

  46. Kadoury S, Labelle H, Paragios N (2011) Automatic inference of articulated spine models in CT images using high-order Markov random fields. Med Image Anal 15(4):426–437 (special section on IPMI 2009)

    Article  Google Scholar 

  47. Kaminsky J, Klinge P, Rodt T, Bokemeyer M, Luedemann W, Samii M (2004) Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput Med Imaging Graph 28(3):119–127

    Article  Google Scholar 

  48. Karangelis G, Zimeras S (2002) An accurate 3D segmentation method of the spinal canal applied to CT data. In: Meiler M, Saupe D, Kruggel F, Handels H, Lehmann T (eds) Bildverarbeitung fr die Medizin 2002. Springer Berlin, Informatik aktuell, pp 370–373

    Google Scholar 

  49. Kass M, Wittkin A, Terzopoulos D (1987) Snakes, active contour models. Int J Comput Vision 1:321–331

    Article  Google Scholar 

  50. Kim Y, Kim D (2009) A fully automatic vertebra segmentation method using 3D deformable fences. Comput Med Imaging Graph 33(5):343–352

    Article  Google Scholar 

  51. Klinder T, Wolz R, Lorenz C, Franz A, Ostermann J (2008) Spine segmentation using articulated shape models. In: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention—part I, MICCAI’08. Springer, Berlin, pp 227–234

    Google Scholar 

  52. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482

    Article  Google Scholar 

  53. Koh J, Kim T, Chaudhary V, Dhillon G (2010) Automatic segmentation of the spinal cord and the dural SAC in lumbar MR images using gradient vector flow field. In: Proceedings of the 32nd annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp 2117–2120

    Google Scholar 

  54. Koh J, Scott PD, Chaudhary V, Dhillon G (2011) An automatic segmentation method of the spinal canal from clinical MR images based on an attention model and an active contour model. In: Proceedings on IEEE international symposium on biomedical imaging, ISBI, pp 1467–1471

    Google Scholar 

  55. Koh J, Chaudhary V, Dhillon G (2012) Disc herniation diagnosis in MRI using a CAD framework and a two-level classifier. Int J Comput Assist Radiol Surg 7(6):861–869

    Article  Google Scholar 

  56. Koompairojn S, Hua KA, Bhadrakom C (2006) Automatic classification system for lumbar spine X-ray images. In: Proceedings of the 19th IEEE symposium on computer-based medical systems, CBMS’06. IEEE Computer Society, Washington, DC, pp 213–218

    Google Scholar 

  57. Krudy AG (1992) MR myelography using heavily T2-weighted fast spin-echo pulse sequences with fat presaturation. Am J Roentgenol 159(6):1315–1320

    Article  Google Scholar 

  58. Law M, Tay K, Leung A, Garvin GJ, Li S (2013) Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med Image Anal 17(1):43–61

    Article  Google Scholar 

  59. Lecron F, Benjelloun M, Mahmoudi S (2012) Fully automatic vertebra detection in X-ray images based on multi-class SVM. In: Proceedings of SPIE, vol 8314, p 83142D

    Google Scholar 

  60. Long LR, Thoma GR (2000) Use of shape models to search digitized spine X-rays. In: Proceedings of 13th IEEE symposium on computer-based medical systems (CBMS), pp 255–260

    Google Scholar 

  61. Ma J, Lu L (2013) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Comput Vis Image Underst 117(9):1072–1083

    Article  MathSciNet  Google Scholar 

  62. Madan S, Deanery M (2003) Interobserver error in interpretation of the radiographs for degeneration of the lumbar spine. Iowa Orthop J 32:51–56

    Google Scholar 

  63. Masaki T, Lee Y, Tsai DY, Sekiya M, Kazama K (2006) Automatic determination of the imaging plane in lumbar MRI. In: Proceedings of SPIE of medical imaging, pp 1252–1259

    Google Scholar 

  64. Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10(4):560–577 [special issue on Functional Imaging and Modelling of the Heart (FIMH 2005)]

    Article  Google Scholar 

  65. McIntosh C, Hamarneh G (2006) Spinal crawlers: deformable organisms for spinal cord segmentation and analysis. In: Proceedings of the 9th international conference on medical image computing and computer-assisted intervention—volume part I, MICCAI’06. Springer, Berlin, pp 808–815

    Google Scholar 

  66. Michopoulou S, Boniatis I, Costaridou L, Cavouras D, Panagiotopoulos E, Panayiotakis G (2009) Computer assisted characterization of cervical intervertebral disc degeneration in MRI. J Instrum 4:287–293

    Article  Google Scholar 

  67. Michopoulou S, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A (2009) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231

    Article  Google Scholar 

  68. Michopoulou SK, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-pokropek A (2009) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. Biomed Eng, IEEE Trans 56:2225–2231

    Article  Google Scholar 

  69. Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A (2010) Automatic segmentation of spinal cord MRI using symmetric boundary tracing. Inf Technol Biomed, IEEE Trans 14(5):1275–1278

    Article  Google Scholar 

  70. Mulconrey D, Knight R, Bramble J, Paknikar S, Harty P (2006) Interobserver reliability in the interpretation of diagnostic lumbar MRI and nuclear imaging. Spine J 6:177–184

    Article  Google Scholar 

  71. Neubert A, Fripp J, Engstrom C, Schwarz R, Lauer L, Salvado O, Crozier S (2012) Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys Med Biol 9:8357–8376

    Article  Google Scholar 

  72. Neubert A, Fripp J, Engstrom C, Walker D, Schwarz R, Crozier S (2013) Automatic quantification of 3D morphology and appearance of intervertebral discs in high resolution MRI. In: Annual meeting and exhibition on International Society for Magnetic Resonance in Medicine (ISMRM). International Society for Magnetic Resonance in Medicine (ISMRM), Salt Lake City, p 1612

    Google Scholar 

  73. Nicholson P, Haddaway MJ, Davie M, Evans SF (1993) A computerized technique for vertebral morphometry. Physiol Meas 14(2):195

    Article  Google Scholar 

  74. Nieniewski M, Serneels R (2002) Segmentation of spinal cord images by means of watershed and region merging together with inhomogeneity correction. MG&V 11(1):101–121

    Google Scholar 

  75. Nyúl LG, Kanyó J, Máté E, Makay G, Balogh E, Fidrich M, Kuba A (2005) Method for automatically segmenting the spinal cord and canal from 3D CT images. In: CAIP, pp 456–463

    Google Scholar 

  76. Oktay AB, Akgul YS (2011) Localization of the lumbar discs using machine learning and exact probabilistic inference. In: Medical image computing and computer-assisted intervention (MICCAI), vol 3

    Google Scholar 

  77. Pekar V, Bystrov D, Heese HS, Dries S, Schmidt S, Grewer R, den Harder CJ, Bergmans RC, Simonetti AW, van Muiswinkel AM (2007) Automated planning of scan geometries in spine MRI scans. In: Medical image computing and computer-assisted intervention—MICCAI 2007, vol 4791. Springer, Berlin, pp 601–608

    Google Scholar 

  78. Peng Z, Zhong J, Wee W, Lee J (2005) Automated vertebra detection and segmentation from the whole spine MR images. In: 27th annual international conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp 2527–2530

    Google Scholar 

  79. Perona P, Shiota T, Malik J (1994) Geometry-driven diffusion in computer vision. Springer, Berlin

    Google Scholar 

  80. Rasoulian A, Rohling R, Abolmaesumi P (2013) Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+ pose model. IEEE Trans Med Imaging 32(10):1890–1900

    Article  Google Scholar 

  81. Roberts AN, Gratin C, Whitehouse GH (1997) MRI analysis of lumbar intervertebral disc height in young and older populations. J Magn Reson Imaging 7(5):880–886

    Article  Google Scholar 

  82. Schmidt S, Kappes H, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. In: IPMI’07, vol 4584., Lecture notes in computer science. Springer, Berlin, pp 122–133

    Google Scholar 

  83. Seifert S, Wachter I, Schmelzle G, Dillmann R (2009) A knowledge-based approach to soft tissue reconstruction of the cervical spine. IEEE Trans Med Imaging 28(4):494–507

    Article  Google Scholar 

  84. Shen H, Litvin A, Alvino C (2008) Localized priors for the precise segmentation of individual vertebras from CT volume data. In: The proceedings of medical imaging computing and computer assisted intervention (MICCAI’08), vol 5241., LNCS, pp 367–375

    Google Scholar 

  85. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  86. Shi R, Sun D, Qiu Z, Weiss KL (2007) An efficient method for segmentation of MRI spine images. In: IEEE/ICME international conference on complex medical engineering (CME 2007), pp 713–717

    Google Scholar 

  87. Smyth PP, Taylor CJ, Adams JE (1997) Automatic measurement of vertebral shape using active shape models. In: Duncan J, Gindi G (eds) Information processing in medical imaging, vol 1230., Lecture notes in computer scienceSpringer, Berlin, pp 441–446

    Chapter  Google Scholar 

  88. Snell RS (2007) Clinical anatomy by regions, 8th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  89. Stanley RJ, Antani S, Long R, Thoma G, Gupta K, Das M (2008) Size-invariant descriptors for detecting regions of abnormal growth in cervical vertebrae. Comput Med Imaging Graph 32(1):44–52

    Article  Google Scholar 

  90. Tan S, Yao J, Ward M, Yao L, Summers R (2006) Computer aided evaluation of ankylosing spondylitis. In: 3rd IEEE international symposium on biomedical imaging: nano to macro, 2006, pp 339–342

    Google Scholar 

  91. Tan S, Yao J, Ward MM, Yao L, Summers RM (2007) 3D multi-scale level set segmentation of vertebrae. In: 4th IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2007, pp 896–899

    Google Scholar 

  92. Tartaro A, Onofrj M, Delli C, Bonomo L, Thomas A, Fulgente T, Gambi D (1996) Long time echo stir sequence magnetic resonance imaging of optic nerves in optic neuritis. Ital J Neurol Sci 17(1):35–42

    Article  Google Scholar 

  93. Tien RD (1992) Fat-suppression MR imaging in neuroradiology: techniques and clinical application. Am J Roentgenol 158(2):369–379

    Article  Google Scholar 

  94. Tsai M, Jou S, Hsieh M (2002) A new method for lumbar herniated inter-vertebral disc diagnosis based on image analysis of transverse sections. Comput Med Imaging Graph 26(6):369–380

    Article  Google Scholar 

  95. University S (2009) A patient’s guide to lumbar spine anatomy. Website:www.spineuniversity.com

  96. Vrtovec T, Likar B, Pernus F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50(19):4527–4540

    Article  Google Scholar 

  97. Vrtovec T, Ourselin S, Gomes L, Likar B, Pernus F (2007) Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol 52(10):2865–2878

    Article  Google Scholar 

  98. Štern D, Likar B, Pernuš F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56(23):7505

    Article  Google Scholar 

  99. Wachter I, Seifert S, Dillmann R (2005) Automatic segmentation of cervical soft tissue from MR images. In: J Troccaz, P Merloz (eds) Proceedings of Surgetica, Chambery

    Google Scholar 

  100. Weiss KL, Storrs JM, Banto RB (2006) Automated spine survey iterative scan technique. Radiology 239(1):255–262

    Article  Google Scholar 

  101. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. Image Process, IEEE Trans 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  102. Yao J, O’Connor S, Summers R (2006) Automated spinal column extraction and partitioning. In: 3rd IEEE international symposium on biomedical imaging: nano to macro 2006, pp 390–393

    Google Scholar 

  103. Zewail R, Elsafi A, Durdle N (2009) Vertebral segmentation using contourlet-based salient point matching and localized multiscale shape prior. In: Pluim JPW, Dawant BM (eds) Medical imaging 2009: image processing, vol 7259. SPIE, Bellingham, p 72594Z

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from NYSTAR and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja S. Alomari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alomari, R.S., Ghosh, S., Koh, J., Chaudhary, V. (2015). Vertebral Column Localization, Labeling, and Segmentation. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics