Skip to main content

Robotic Assistance and Intervention in Spine Surgery

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

Robotic assistance and intervention methods have now been in use in several surgical specialties for nearly three decades. While image guided surgery for orthopedics (led by such developments as the Integrated Surgical Systems Inc. ROBODOC system) lead early clinical application, it is laparoscopic and telesurgical robotic applications (such as with the Intuitive Surgical Inc. da Vinci surgical systems) that have found the widest clinical and user acceptance. Orthopedic and neurosurgical robotic systems have yet to be widely applied as robotic assistance systems (such as Mazor Robotics SpineAssist or Renaissance systems) have only been recently approved for clinical use. Given the large volume of spinal procedures such as pedicle screw placement for spinal fusion, vertebroplasties, osteotomies, biopsies and other spinal surgeries several other image-guided robotic systems are in advanced research and development. The goals of these devices include improving the efficacy and safety (including radiation safety) for both the patient and the surgeon. This survey includes recent development and results for these robotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matis GK, Silva D, Chrysou OI, Birbilis TA, Bernardo A, Stieg PE (2012) Robotics for spinal operations: reality or Alice in Wonderland? Int J Med Robotics Comput Assist Surg 8:125–126

    Article  Google Scholar 

  2. Chitwood W Jr (2005) Current status of endoscopic and robotic mitral valve surgery. Ann Thoracic Surg 79(6):2248–2253

    Article  Google Scholar 

  3. Sutherland GR, McBeth PB, Louw DF (2003) NeuroArm: an MR compatible robot for microsurgery. In: International congress series, vol 1256. Elsevier, pp 504–508

    Google Scholar 

  4. Mavrogenis AF, Aavvidou OD, Mimidis G, Papanastasiou J, Koulalis D, Demertzis N, Papagelopolos PJ (2013) Computer-assisted navigation in orthopedic surgery. Orthopedics 36(8):631–642

    Article  Google Scholar 

  5. Sistona RA, Giori NJ, Goodman SB, Delp SL (2007) Surgical navigation for total knee arthroplasty: a perspective. J Biomech 40:728–735

    Article  Google Scholar 

  6. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15(1):11–14

    Article  Google Scholar 

  7. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868

    Article  Google Scholar 

  8. Hamilton DK, Smith JS et al (2011) Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine 36(15):1218–1228

    Article  Google Scholar 

  9. Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars ZF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot Autom 10(3)

    Google Scholar 

  10. Paul A (1999) Surgical robot in endoprosthetics. How CASPAR assists on the hip. Fortschritte der Medizin 141(33):18

    Google Scholar 

  11. Xia T, Baird C, Jallo G, Hayes K, Nakajima N, Hata N, Kazanzides P (2008) An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot Comput Assist Surg 4(4):321–330

    Article  Google Scholar 

  12. Yao J, Taylor RH, Goldberg RP, Kumar R, Bzostek A, Vorhis RV, Kazanzides P, Gueziec A (2000) A C-arm fluoroscopy guided progressive cut refinement strategy using surgical robot. Comput Assist Surg 5(6):373–390

    Article  Google Scholar 

  13. Yao J, Taylor RH, Goldberg RP, Kumar R, Bzostek A, Vorhis RV, Kazanzides P, Gueziec A, Funda J (1999) A progressive cut refinement scheme for revision total hip replacement surgery using C-arm fluoroscopy. In: Proceedings of medical image computing and computer assisted intervention, Lecture notes in computer science (LNCS), vol 1679. pp 1010–1019

    Google Scholar 

  14. Kumar R (2001) An augmented steady hand system for precise micromanipulation. Ph.D. thesis, The Johns Hopkins University

    Google Scholar 

  15. Sackier JM, Wang Y (1996) Robotically assisted laparoscopic surgery: from concept to development. In: Computer-integrated surgery. MIT Press, Cambridge, pp 577–580

    Google Scholar 

  16. Ortmaier T, Weiss H, Döbele S, Schreiber U (2006) Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. Int J Med Robot 2(4):350–363

    Article  Google Scholar 

  17. Guthart GS, Salisbury JK (2000) The intuitive telesurgery system: overview and application. In: IEEE international conference on robotics and automation (ICRA), pp 618–621

    Google Scholar 

  18. Shuford MD (2007) Robotically assisted laparoscopic radical prostatectomy: a brief review of outcomes. In: Proceeding Baylor University Medical Center, vol 20. pp 354–356

    Google Scholar 

  19. Thali R, Shah K, Patel VR (2007) Robotic surgery clinical review: applications of robots in urology. Robotic Surg 1(1):3–17

    Article  Google Scholar 

  20. Boggess J (2007) Robotic surgery in gynecologic oncology: evolution of a new surgical paradigm. J Rob Surg 1(1):31–37

    Article  Google Scholar 

  21. Bhayani SB, Snow DC (2008) Novel dynamic information integration during da Vinci robotic partial nephrectomy and radical nephrectomy. J Rob Surg 2(2):67–69

    Article  Google Scholar 

  22. Curry M, Malpani A, Li R, Jog A, Tantillo T, Blanco R, Ha P, Califano J, Kumar R, Richmon J (2012) Objective assessment in residency based training for transoral robotic surgery. The Laryngoscope

    Google Scholar 

  23. Kumar R, Hoffman B, Prisco G, Larkin D, Nowlin W et al (2013) Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures. US patent 8,527,094

    Google Scholar 

  24. Bertelsen A, Melo J, Sánchez E, Borro D (2013) A review of surgical robots for spinal interventions. Int J Med Robot Comput Assist Surg 9:407–422

    Article  Google Scholar 

  25. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(S1):A12–A18

    Google Scholar 

  26. Kumar R (2010) Robotic surgery. In: Levine W et al (ed) The control handbook, 2nd edn. CRC Press, Boca Raton, pp 20.1–20.20

    Google Scholar 

  27. Faust RA (ed) (2006) Robotics in surgery: history, current and future applications. Nova Science Pub Inc., Hauppauge

    Google Scholar 

  28. Peters T, Cleary, K (eds) (2008) Image-guided interventions: technology and applications. Springer, Heidelberg

    Google Scholar 

  29. Hagn U, Ortmaier T, konietschke R, Kuebler B, Seibold U, Tobergte A, Stefanjoerg M, Hirzinger G (2008) Telemanipultion for remote minimally invasive surgery. IEEE Robot Autom Mag

    Google Scholar 

  30. Hagag B, Abovitz R, Kang H, Schmitz B, Conditt M (2011) RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. Surg Robot 219–246

    Google Scholar 

  31. Hempel E, Fischer H, Gumb L et al (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8(4):180–191

    Article  Google Scholar 

  32. Ju H, Zhang J, An G, et al (2008) A robot-assisted system for minimally invasive spine surgery of percutaneous vertebroplasty based on CT images. In: IEEE conference on robotics, automation and mechatronics, pp 290–295

    Google Scholar 

  33. Blumenkranz S, Larkin D, Kumar R (2010) Modular force sensor. US patent number 7752920

    Google Scholar 

  34. Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19(5):893–901

    Article  Google Scholar 

  35. Ponnusamy K, Chewning S, Mohr CJ (2009) Robotic approaches to the posterior spine. Spine 34(19):2104–2109

    Article  Google Scholar 

  36. Yang MS, Yoon do H, Kim KN, Kim H, Yang JW, Yi S, Lee JY, Jung WJ, Rha KH, Ha Y (2011) Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine 36(2):E139–E143

    Google Scholar 

  37. Kim MJ, Ha Y, Yang MS et al (2010) Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir (Wien) 152(4):675–679

    Article  Google Scholar 

  38. Beutler WJ, Eppelman WC Jr., DiMarco LA (2013) The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine 38(4):356–363

    Google Scholar 

  39. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868

    Article  Google Scholar 

  40. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2014) Mazor robotics website. http://mazorrobotics.com/renaissance/clinical-evidence/. Accessed Jan 2014

  41. Hu X, Lieberman IH (2013) What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Related Res. E-publication available at http://link.springer.com/article/10.1007%2Fs11999-013-3291-1?_escaped_fragment_=#!

  42. Sukovich W, Brink-Danan S, Hardenbrook M (2006) Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot 2:114–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, R. (2015). Robotic Assistance and Intervention in Spine Surgery. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics