Skip to main content

Model-Based Segmentation, Reconstruction and Analysis of the Vertebral Body from Spinal CT

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

  • 1581 Accesses

Abstract

In this chapter, we present novel vertebral body segmentation methods in computed tomography (CT) images. Three pieces of information (intensity, spatial interaction, and shape) are modeled to optimize new probabilistic energy functions; and hence to obtain the optimum segmentation. The information of the intensity and spatial interaction are modeled using the Gaussian and Gibbs distribution, respectively. A shape model is proposed using new probabilistic functions to enhance the segmentation results. The models are generic shape information which is obtained using the cervical, lumbar, and thoracic spinal regions. The proposed methods are validated with clinical CT images and on a phantom with various Gaussian noise levels. This study reveals that the proposed methods are robust under various noise levels, less variant to the initialization, and quite faster than alternative methods. Applications on bone mineral density (BMD) measurements of vertebral body are given to illustrate the accuracy of the proposed segmentation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All algorithms are run on a PC with a 2 GHz Core i7 Quad processor with 6 GB RAM.

References

  1. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13:471–482

    Article  Google Scholar 

  2. Kang Y, Klaus E, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 5:586–598

    Google Scholar 

  3. Kalender WA, Felsenberg D, Genant HK, Fischer M, Dequeker J, Reeve J (1995) The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20(2):83–92

    Google Scholar 

  4. Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10(4):560–577

    Article  Google Scholar 

  5. Kaminsky J, Klinge P, Bokemeyer M, Luedemann W, Samii M (2004) Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput Med Imaging Graph 28(3):119–127

    Article  Google Scholar 

  6. Roberts M, Cootes T, Adams J (2005) Vertebral shape: automatic measurement with dynamically sequenced active appearance models. Proc Int Conf Med Image Comput Comput Assist Interv 2:733–740

    Google Scholar 

  7. Tan S, Yao J, Ward MM, Yao L, Summers RM (2008) Computer aided evaluation of ankylosing spondylitis using high-resolution CT. IEEE Trans Med Imaging (TMI) 27(9):1252–1267

    Article  Google Scholar 

  8. Criscob JJ, Sebastiana TB, Teka H, Kimia BB (2003) Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7(1):21–45

    Google Scholar 

  9. Kim Y, Kim D (2009) A fully automatic vertebra segmentation method using 3D deformable fences. Comput Med Imaging Graph 33:343–352

    Article  Google Scholar 

  10. Leventon ME, Grimson WEL, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: Proceedings of IEEE CVPR, pp 1316–1324

    Google Scholar 

  11. Chen Y, Thiruvenkadam S, Huang F, Wilson D, Geiser EA, Tagare HD (2001) On the incorporation of shape priors into geometric active contours. In: IEEE VLSM, pp 145–152

    Google Scholar 

  12. Huang X, Metaxas D, Chen T (2004) Metamorphs: deformable shape and texture models. In: Proceedings IEEE CVPR, pp 496–503

    Google Scholar 

  13. Besag JE (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48:259–302

    MATH  MathSciNet  Google Scholar 

  14. North OH (1943) An analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems. In: Proceedings of IEEE: RCA Labs, Princeton, NJ, Rep. PTR-6C, pp 1016–1063

    Google Scholar 

  15. Kumar BVKV, Savvides M, Xie C (2006) Correlation pattern recognition for face recognition. Proc IEEE 94(11):1963–1976

    Article  Google Scholar 

  16. Aslan MS, Ali A, Rara H, Farag AA (2010) An automated vertebra identification and segmentation in CT images. In: Proceedings of 5th international conference on image processing (ICIP’10), pp 233–236

    Google Scholar 

  17. Kim Y, Kim D (2009) A fully automatic vertebra segmentation method using 3D deformable fences. Comput Med Imaging Graph 33:343–352

    Article  Google Scholar 

  18. Moon T (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 11:47–60

    Article  Google Scholar 

  19. Borman S (2004) The expectation maximization algorithm: a short tutorial. Technical report available at http://www.seanborman.com/publications

  20. Ali AM, Farag AA (2008) Automatic lung segmentation of volumetric low-dose CT scans using graph cuts. In: Proceedings of the international symposium on visual computing (ISVC’08), pp 258–267

    Google Scholar 

  21. Dubes RC, Jain AK (1989) Random field models in image analysis. J Appl Stat 16:131–164

    Article  Google Scholar 

  22. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  23. Derin H, Elliott H (1987) Modeling and segmentation of noisy and textured images using gibbs random fields. IEEE Trans Pattern Anal Mach Intell 9(1):39–55

    Article  Google Scholar 

  24. Ali A, Farag AA, Gimel’farb G (2008) A comparative study of energy minimization methods for Markov random fields. In: Proceedings of ECCV

    Google Scholar 

  25. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Proceedings European conference on computer vision

    Google Scholar 

  26. El Munim HEA, Farag AA (2007) Curve/surface representation and evolution using vector level sets with application to the shape-based segmentation problem. IEEE Trans Pattern Anal Mach Intell 29(6):945–958

    Article  Google Scholar 

  27. Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson WE, Willsky A (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137–154

    Article  Google Scholar 

  28. Cremers D, Osher SJ, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vision 69(3):335–351

    Article  Google Scholar 

  29. Aslan MS, Mostafa E, Abdelmunim H, Shalaby A, Farag AA (2011) A novel probabilistic simultaneous segmentation and registration using level set. In: Proceedings of the international conference on image processing, pp 2161–2164

    Google Scholar 

  30. Aslan MS, Shalaby A, Farag AA (2013) Clinically desired segmentation method for vertebral bodies. In: IEEE 10th international symposium on biomedical imaging (ISBI), pp 840–843

    Google Scholar 

  31. Goldman LW (2007) Principles of CT: radiation dose and image quality. J Nucl Med Technol 35:213–225

    Article  Google Scholar 

  32. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  33. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Proceedings of the 2005 IEEE Computer Society conference on computer vision and pattern recognition

    Google Scholar 

  34. Ali AA, Farag AA, El-Baz AS (2007) Graph cuts framework for kidney segmentation with prior shape constraints. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’07), pp 384–392

    Google Scholar 

  35. Ali AM, Farag AA (2008) Density estimation using a new AIC-type criterion and the EM algorithm for a linear combination of gaussians. In: Proceedings of IEEE international conference on image processing (ICIP’08), pp 3024–3027

    Google Scholar 

  36. Ali AM, Farag AA (2008) A novel framework for ND multimodal image segmentation using graph cuts. In: 15th IEEE international conference on image processing, pp 729–732

    Google Scholar 

  37. Ali AM, Farag AA, Gimel’farb G (2008) Analytical method for MGRF potts model parameters estimation. In: Proceedings of the international conference on pattern recognition (ICPR-08)

    Google Scholar 

  38. Farag AA, El-Baz AS, Gimel’farb G (2006) Precise segmentation of multimodal images. IEEE Trans Image Process 15(4):952–968

    Article  Google Scholar 

  39. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans PAMI 26(9):1124–1137

    Article  Google Scholar 

  40. Aslan MS, Ali A, Farag AA, Rara H, Arnold B, Xiang P (2010) 3D vertebral body segmentation using shape based graph cuts. In: Proceedings of the international conference on pattern recognition (ICPR-10)

    Google Scholar 

  41. Farag AA, Hassan H (2004) Adaptive segmentation of multi-modal 3D data using robust level set techniques. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 143–150

    Google Scholar 

  42. Shalaby A, Aslan M, Abdelmunim H, Farag A (2012) 2D-PCA based shape prior for level sets segmentation framework of the vertebral body. In: Proceedings of the 6th Cairo international conference on biomedical engineering (CIBEC’12), Cairo, Egypt, pp 134–137

    Google Scholar 

  43. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  44. Aslan MS, Shalaby A, Abdelmunim H, Farag AA (2013) A probabilistic shape-based segmentation method using level sets. IET Comput Vision

    Google Scholar 

  45. Aslan MS, Ali A, Rara H, Arnold B, Farag AA, Fahmi R, Xiang P (2009) A novel 3D segmentation of vertebral bones from volumetric CT images using graph cuts. In: Advances in visual computing, Springer, Berlin, pp 519–528

    Google Scholar 

  46. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  47. Aslan MS, Abdelmunim H, Farag AA, Arnold B, Mustafa E, Xiang P (2011) A new shape based segmentation framework using statistical and variational methods. In: Proceedings of IEEE international conference on image processing (ICIP)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly A. Farag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aslan, M., Shalaby, A., Ali, A., Farag, A.A. (2015). Model-Based Segmentation, Reconstruction and Analysis of the Vertebral Body from Spinal CT. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics