Skip to main content

Articulated Statistical Shape Models of the Spine

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

  • 1620 Accesses

Abstract

The spine is a complex assembly of rigid vertebrae surrounded by various soft tissues (ligaments, spinal cord, intervertebral discs, etc.). Its motion for a given individual and its shape variations across a population are greatly influenced by this fact. We show in this chapter how statistical shape models can be constructed, used, and analyzed while taking into account the articulated nature of the spine. We begin by defining what articulated models are and how they can be extracted from existing 3D reconstructions or segmented models. As an example, we use data from scoliotic patients that have been reconstructed in 3D using bi-planar radiographs. Articulated models naturally belong to a manifold where conventional statistical tools are not applicable. In this context, a few key concepts allowing the computation of statistical models on Riemannian manifolds are presented. When properly visualized, the resulting statistical models can be quite useful to analyze and compare the shape variations in different groups of patients. Two different approaches to visualization are demonstrated graphically. Finally, another important use of statistical models in medical imaging is to constrain the solution of inverse problems. Articulated models can readily be used in this context, we illustrate this in the context of 3D model reconstruction using partial data. More precisely, we will show the benefits of integrating a simple regularization term based on articulated statistical models to well known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubin CE, Dansereau J, Parent F, Labelle H, de Guise J (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Bio Eng Comp 35

    Google Scholar 

  2. Becker M, Kirschner M, Fuhrmann S, Wesarg S (2011) Automatic construction of statistical shape models for vertebrae. In: Medical image computing and computer-assisted intervention, Springer, Berlin, pp 500–507

    Google Scholar 

  3. Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337

    Article  Google Scholar 

  4. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Articulated spine models for 3-D reconstruction from partial radiographic data. IEEE Trans Biomed Eng 55(11):2565–2574

    Article  Google Scholar 

  5. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27(4):557–568

    Article  Google Scholar 

  6. Boothby WM (1986) An introduction to differentiable manifolds and Riemannian geometry, vol 120. Academic Press, Massachusetts

    Google Scholar 

  7. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  8. Corso JJ, Raja’S A, Chaudhary V (2008) Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Medical image computing and computer-assisted intervention, Springer, Berlin, pp 202–210

    Google Scholar 

  9. Cresson T, Chav R, Branchaud D, Humbert L, Godbout B, Aubert B, Skalli W, De Guise JA (2009) Coupling 2D/3D registration method and statistical model to perform 3D reconstruction from partial X-rays images data. In: IEEE engineering in medicine and biology conference, pp 1008–1011

    Google Scholar 

  10. de Bruijne M, Lund MT, Tankó LB, Pettersen PC, Nielsen M (2007) Quantitative vertebral morphometry using neighbor-conditional shape models. Med Image Anal 11(5):503–512

    Article  Google Scholar 

  11. Delorme S, Labelle H, Aubin CE, de Guise JA, Rivard CH, Poitras B, Coillard C, Dansereau J (1999) Intraoperative comparison of two instrumentation techniques for the correction of adolescent idiopathic scoliosis. Rod rotation and translation. Spine 24:2011–2011

    Article  Google Scholar 

  12. Delorme S, Labelle H, Aubin CE, de Guise JA, Rivard CH, Poitras B, Dansereau J (2000) A three-dimensional radiographic comparison of Cotrel-Dubousset and colorado instrumentations for the correction of idiopathic scoliosis. Spine 25:205–210

    Article  Google Scholar 

  13. Delorme S, Labelle H, Poitras B, Rivard CH, Coillard C, Dansereau J (2000) Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord 13

    Google Scholar 

  14. Dong X, Zheng G (2010) Automated vertebra identification from X-ray images. In: Image analysis and recognition, Springer, Berlin, pp 1–9

    Google Scholar 

  15. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York

    Google Scholar 

  16. Elias de Oliveira M, Reutlinger C, Zheng G, Hasler C, Buchler P (2010) Statistical shape modeling of pathological scoliotic vertebrae: a comparative analysis. In: 2010 annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 5939–5942

    Google Scholar 

  17. Fletcher PT, Lu C, Pizer SM, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8)

    Google Scholar 

  18. Fleute M (2001) Shape reconstruction for computer assisted surgery based on non-rigid registration of statistical models with intra-operative point data and X-ray images. These de l’Université Joseph Fourier, Grenoble I

    Google Scholar 

  19. Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst H Poincaré 10:215–310

    Google Scholar 

  20. Gill S, Abolmaesumi P, Fichtinger G, Boisvert J, Pichora D, Borshneck D, Mousavi P (2012) Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med Image Anal 16(3):662–674

    Article  Google Scholar 

  21. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  22. Humbert L, De Guise J, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  Google Scholar 

  23. Kadoury S, Cheriet F, Labelle H (2009) Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE Trans Med Imaging 28(9):1422–1435

    Article  Google Scholar 

  24. Kirschner M, Becker M, Wesarg S (2011) 3D active shape model segmentation with nonlinear shape priors. In: Medical image computing and computer-assisted intervention, Springer, Berlin, pp 492–499

    Google Scholar 

  25. Klinder T, Wolz R, Lorenz C, Franz A, Ostermann J (2008) Spine segmentation using articulated shape models. In: Medical image computing and computer-assisted intervention, Springer, Berlin, pp 227–234

    Google Scholar 

  26. Lecron F, Boisvert J, Mahmoudi S, Labelle H, Benjelloun M (2013) Three-dimensional spine model reconstruction using one-class SVM regularization. IEEE Trans Biomed Eng 60(11)

    Google Scholar 

  27. Mika S, Schölkopf B, Smola AJ, Müller KR, Scholz M, Rätsch G (1998) Kernel PCA and de-noising in feature spaces. Neural Inf Process Syst 11:536–542

    Google Scholar 

  28. Mitulescu A, Semaan I, Guise JAD, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39(2):152–158

    Article  Google Scholar 

  29. Moura DC, Boisvert J, Barbosa JG, Labelle H, Tavares JMR (2011) Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model. Med Eng Phys 33(8):924–933

    Article  Google Scholar 

  30. Papin P, Labelle H, Delorme S, Aubin CE, de Guise JA, Dansereau J (1999) Long-term three-dimensional changes of the spine after posterior spinal instrumentation and fusion in adolescent idiopathic scoliosis. Eur Spine J 8:16–16

    Article  Google Scholar 

  31. Pennec X (1999) Probabilities and statistics on riemannian manifolds: basic tools for geometric measurements. Proc IEEE-EURASIP Workshop Nonlinear Signal Image Process 1:194–198

    Google Scholar 

  32. Pennec X, Thirion JP (1997) A framework for uncertainty and validation of 3D registration methods based on points and frames. Int J Comput Vis 25(3):203–229

    Article  Google Scholar 

  33. Plamondon A, Gagnon M, Maurais G (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13(9):1027–1032

    Article  Google Scholar 

  34. Pomero V, Mitton D, Laporte S, Guise JAD, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech 19(3):240–247

    Article  Google Scholar 

  35. Rasoulian A, Rohling R, Abolmaesumi P (2013) Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape + pose model. In: IEEE transactions on medical imaging

    Google Scholar 

  36. Roberts MG, Cootes TF, Pacheco E, Oh T, Adams JE (2009) Segmentation of lumbar vertebrae using part-based graphs and active appearance models. In: Medical image computing and computer-assisted intervention, Springer, Berlin, pp 1017–1024

    Google Scholar 

  37. Roberts M, Oh T, Pacheco E, Mohankumar R, Cootes T, Adams J (2012) Semi-automatic determination of detailed vertebral shape from lumbar radiographs using active appearance models. Osteoporos Int 23(2):655–664

    Article  Google Scholar 

  38. Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnorr C (2007) Spine detection and labeling using a parts-based graphical model. Inf Process Med Imaging 20:122–133

    Article  Google Scholar 

  39. Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211(2):571–578

    Article  Google Scholar 

  40. Sun W, Xiang Yuan Y (2006) Optimization theory and methods: nonlinear programming. Springer, Berlin

    Google Scholar 

  41. Vijvermans V, Fabry G, Nijs J (2004) Factors determining the final outcome of treatment of idiopathic scoliosis with the boston brace: a longitudinal study. J Pediatr Orthop B 13:143–149

    Google Scholar 

  42. Vrtovec T, Likar B, Pernuš F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50(19):4527

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank M.-A. Drouin whose astute comments greatly improved the manuscript. We would also like to acknowledge Dr. H. Labelle and the Sainte-Justine Hospital (Montreal, Canada) staff for meticulously collecting a large number of high quality 3D reconstructions of the spine over many years and for giving us access to some of these reconstructions. Statistical methods are quite powerful, but they are useless without good data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Boisvert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boisvert, J. (2015). Articulated Statistical Shape Models of the Spine. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics