Skip to main content

Polymers in Orthopaedic Surgery

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Polymers have been used as biomaterials in Orthopaedic Surgery for decades. Despite reports of complications with some polymeric materials, most are biocompatible and have been used successfully in total joint replacements, for soft tissue reconstruction, for joint fusion, and as fracture fixation devices. In this chapter we will describe the types of polymers used in commercially-available orthopaedic implants, and then give a breakdown by clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PMMA:

Poly(methylmethacrylate)

PE:

Poly(ethylene)

UHMWPE:

Ultra-high molecular weight poly(ethylene)

HXPE:

Highly cross-linked PE

PEEK:

Poly(etheretherketone)

LPLA:

Poly(L-lactide)

DLPLA:

Poly(DL-lactide)

LDLPLA:

Poly(DL-lactide-co-L-lactide)

PGA:

Poly(glycolide)

LPLG:

Poly(L-lactide-co-glycolide)

DLPLG:

Poly(DL-lactide-co-glycolide)

References

  1. Rohm, O.: On the polymerization products of acrylic acid. Chemistry (dissertation). University of Tubingen, Tubingen (1901)

    Google Scholar 

  2. Charnley, J.: The bonding of prostheses to bone by cement. J. Bone Joint Surg. Br. 46, 518–529 (1964)

    CAS  Google Scholar 

  3. Smith, D.C.: The genesis and evolution of acrylic bone cement. Orthop. Clin. North Am. 36, 1–10 (2005)

    Article  Google Scholar 

  4. Jaeblon, T.: Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J. Am. Acad. Orthop. Surg. 18, 297–305 (2010)

    Google Scholar 

  5. Lewis, G.: Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38, 155–182 (1997)

    Article  CAS  Google Scholar 

  6. Lewis, G.: Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J. Biomed. Mater. Res. B Appl. Biomater. 89, 558–574 (2009)

    Article  Google Scholar 

  7. Harper, E.J., Braden, M., Bonfield, W., et al.: Influence of sterilization upon a range of properties of experimental bone cements. J. Mater. Sci.: Mater. Med. 8, 849–853 (1997)

    CAS  Google Scholar 

  8. Lewis, G., Mladsi, S.: Effect of sterilization method on properties of Palacos R acrylic bone cement. Biomaterials 19, 117–124 (1998)

    Article  CAS  Google Scholar 

  9. Lewis, G.: Apparent fracture toughness of acrylic bone cement: effect of test specimen configuration and sterilization method. Biomaterials 20, 69–78 (1999)

    Article  CAS  Google Scholar 

  10. Graham, J., Pruitt, L., Ries, M., Gundiah, N.: Fracture and fatigue properties of acrylic bone cement: the effects of mixing method, sterilization treatment, and molecular weight. J. Arthroplasty 15, 1028–1035 (2000)

    Article  CAS  Google Scholar 

  11. An, Y.H., Alvi, F.I., Kang, Q., et al.: Effects of sterilization on implant mechanical property and biocompatibility. Int. J. Artif. Organs 28, 1126–1137 (2005)

    CAS  Google Scholar 

  12. Mjoberg, B., Pettersson, H., Rosenqvist, R., Rydholm, A.: Bone cement, thermal injury and the radiolucent zone. Acta Orthop. Scand. 55, 597–600 (1984)

    Article  CAS  Google Scholar 

  13. Urrutia, J., Bono, C.M., Mery, P., Rojas, C.: Early histologic changes following polymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae. Spine 33, 877–882 (2008)

    Article  Google Scholar 

  14. Donaldson, A.J., Thomson, H.E., Harper, N.J., Kenny, N.W.: Bone cement implantation syndrome. Br. J. Anaesth. 102, 12–22 (2009)

    Article  CAS  Google Scholar 

  15. Chen, Y.J., Tan, T.S., Chen, W.H., et al.: Intradural cement leakage: a devastatingly rare complication of vertebroplasty. Spine 31, E379–E382 (2006)

    Article  Google Scholar 

  16. Zhang, J.D., Poffyn, B., Sys, G., Uyttendaele, D.: Comparison of vertebroplasty and kyphoplasty for complications. Orthop. Surg. 3, 158–160 (2011)

    Article  CAS  Google Scholar 

  17. Wang, L., Gardner, A.W., Kwek, E.B., Naidu, G.R.: Retrograde cement arteriovenogram of nutrient vessels following hemiarthroplasty of the hip. Acta Orthop. Belg. 78, 431–435 (2012)

    Google Scholar 

  18. Corcos, G., Dbjay, J., Mastier, C., et al.: Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine 39, E332–E338 (2014)

    Article  Google Scholar 

  19. Krause, W., Mathis, R.S.: Fatigue properties of acrylic bone cements: review of the literature. J. Biomed. Mater. Res. 22, 37–53 (1988)

    CAS  Google Scholar 

  20. Cuckler, J.M.: If hip implant retrievals could speak, what would they tell us? J. Bone Joint Surg. Br. 94, 11–13 (2012)

    Article  CAS  Google Scholar 

  21. Goodman, S.: Wear particulate and osteolysis. Orthop. Clin. North. Am. 36(1), 41–48 (2005)

    Article  Google Scholar 

  22. Rajpura, A., Kendoff, D., Board, T.N.: The current state of bearing surfaces in total hip replacement. Bone Joint J. 96(2), 147–156 (2014)

    Article  Google Scholar 

  23. Gordon, A.C., D’Lima, D.D., Colwell Jr, C.W.: Highly cross-linked polyethylene in total hip arthroplasty. J. Am. Acad. Orthop. Surg. 14, 511–523 (2006)

    Google Scholar 

  24. Oral, E., Muratoglu, O.K.: Vitamin E diffused, highly crosslinked UHMWPE: a review. Int. Orthop. 35, 215–223 (2011)

    Article  Google Scholar 

  25. Goodman, S.B., Gibon, E., Yao, Z.: The basic science of periprosthetic osteolysis. Instr. Course Lect. 62, 201–206 (2013)

    Google Scholar 

  26. Ulrich, S.D., Seyler, T.M., Bennett, D., et al.: Total hip arthroplasties: what are the reasons for revision? Int. Orthop. 32, 597–604 (2008)

    Article  Google Scholar 

  27. Bozic, K.J., Kurtz, S.M., Lau, E., et al.: The epidemiology of revision total hip arthroplasty in the United States. J. Bone Joint Surg. Am. 91, 128–133 (2009)

    Article  Google Scholar 

  28. Bozic, K.J., Kurtz, S.M., Lau, E., et al.: The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res. 468, 45–51 (2010)

    Article  Google Scholar 

  29. Eschbach, L.: Nonresorbable polymers in bone surgery. Injury 31(Suppl 4), 22–27 (2000)

    Article  Google Scholar 

  30. Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007)

    Article  CAS  Google Scholar 

  31. Nino Gomez, D., Eslava, S., Federico, A., et al.: Use of poly(ether ether ketone) cages in foot and ankle surgery. Foot Ankle Clin. 17, 449–457 (2012)

    Article  Google Scholar 

  32. Chen, Y., Wang, X., Lu, X., et al.: Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur. Spine J. 22, 1539–1546 (2013)

    Article  Google Scholar 

  33. Kersten, R.F., van Gaalen, S.M., de Gast, A., Oner, F.C.: Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J.: Official J. North Am. Spine Soc. (2013)

    Google Scholar 

  34. Barber, F.A., Herbert, M.A., Beavis, R.C., Barrera Oro, F.: Suture anchor materials, eyelets, and designs: update 2008. Arthroscopy 24, 859–867 (2008)

    Article  Google Scholar 

  35. Barber, F.A., Herbert, M.A., Hapa, O., et al.: Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update. Arthroscopy 27, 895–905 (2011)

    Article  Google Scholar 

  36. Uzumcugil, O., Yalcinkaya, M., Ozturkmen, Y., et al.: Effect of PEEK polymer on tunnel widening after hamstring ACL reconstruction. Orthopedics 35, e654–e659 (2012)

    Article  Google Scholar 

  37. Gogolewski, S.: Bioresorbable polymers in trauma and bone surgery. Injury 31(Suppl 4), 28–32 (2000)

    Article  Google Scholar 

  38. Rokkanen, P.U., Bostman, O., Hirvensalo, E., et al.: Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21, 2607–2613 (2000)

    Article  CAS  Google Scholar 

  39. Ambrose, C.G., Clanton, T.O.: Bioabsorbable implants: review of clinical experience in orthopedic surgery. Ann. Biomed. Eng. 32, 171–177 (2004)

    Article  Google Scholar 

  40. Kontakis, G.M., Pagkalos, J.E., Tosounidis, T.I., et al.: Bioabsorbable materials in orthopaedics. Acta Orthop. Belg. 73, 159–169 (2007)

    Google Scholar 

  41. Mukherjee, D.P., Pietrzak, W.S.: Bioabsorbable fixation: scientific, technical, and clinical concepts. J Craniofac. Surg. 22, 679–689 (2011)

    Article  Google Scholar 

  42. Bostman, O.M.: Metallic or absorbable fracture fixation devices: a cost minimization analysis. Clin. Orthop. Relat. Res. 329, 233–239 (1996)

    Article  Google Scholar 

  43. Nair, L.S., Laurencin, C.T.: Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol. 102, 47–90 (2006)

    CAS  Google Scholar 

  44. Kluin, O.S., van der Mei, H.C., Busscher, H.J., Neut, D.: Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. 10, 341–351 (2013)

    Article  CAS  Google Scholar 

  45. Ciccone 2nd, W.J., Motz, C., Bentley, C., Tasto, J.P.: Bioabsorbable implants in orthopaedics: new developments and clinical applications. J. Am. Acad. Orthop. Surg. 9, 280–288 (2001)

    Google Scholar 

  46. Knight, S.R., Aujla, R., Biswas, S.P.: Total hip arthroplasty—over 100 years of operative history. Orthop. Rev. 3, e16 (2011)

    Article  Google Scholar 

  47. Callaghan, J.J., Albright, J.C., Goetz, D.D., et al.: Charnley total hip arthroplasty with cement minimum twenty-five-year follow-up. J. Bone Joint Surg. Am. 82(4), 487–497 (2000)

    CAS  Google Scholar 

  48. Cason, G.W., Herkowitz, H.N.: Cervical intervertebral disc replacement. J. Bone Joint Surg. Am. 95, 279–285 (2013)

    Article  Google Scholar 

  49. Jacobs, W., Van der Gaag, N.A., Tuschel, A., et al. Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst. Rev. 9, CD008326 (2012)

    Google Scholar 

  50. Abdul-Jalil, Y., Bartels, J., Alberti, O., Becker, R.: Delayed presentation of pulmonary polymethylmethacrylate emboli after percutaneous vertebroplasty. Spine 32, E589–E593 (2007)

    Article  Google Scholar 

  51. Bose, R., Choi, J.W.: Successful percutaneous retrieval of methyl methacrylate orthopedic cement embolism from the pulmonary artery. Cathet. Cardiovasc. Interv. 76, 198–201 (2010)

    Article  Google Scholar 

  52. Esses, S.I., McGuire, R., Jenkins, J., et al.: American academy of orthopaedic surgeons clinical practice guideline on: the treatment of osteoporotic spinal compression fractures. J. Bone Joint Surg. Am. 93, 1934–1936 (2011)

    Article  Google Scholar 

  53. Waris, E., Konttinen, Y.T., Ashammakhi, N., et al.: Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev. Med. Devices 1, 229–240 (2004)

    Article  Google Scholar 

  54. Yetkin, H., Senkoylu, A.: Biomaterials in orthopaedic surgery and traumatology. Technol. Health Care 10, 173–175 (2002)

    CAS  Google Scholar 

  55. Cotic, M., Vogt, S., Hinterwimmer, S., et al. A matched-pair comparison of two different locking plates for valgus-producing medial open-wedge high tibial osteotomy: peek-carbon composite plate versus titanium plate. Knee Surg. Sports Traumatol. Arthrosc. 1–9 (2014)

    Google Scholar 

  56. Alan Barber, F., Boothby, M.H., Richards, D.P.: New sutures and suture anchors in sports medicine. Sports Med. Arthrosc. 14, 177–184 (2006)

    Article  CAS  Google Scholar 

  57. Gunja, N.J., Athanasiou, K.A.: Biodegradable materials in arthroscopy. Sports Med. Arthrosc. 14, 112–119 (2006)

    Article  Google Scholar 

  58. Denard, P.J., Burkhart, S.S.: The evolution of suture anchors in arthroscopic rotator cuff repair. Arthroscopy 29, 1589–1595 (2013)

    Article  Google Scholar 

  59. Dhawan, A., Ghodadra, N., Karas, V., et al.: Complications of bioabsorbable suture anchors in the shoulder. Am. J. Sports Med. 40, 1424–1430 (2012)

    Article  Google Scholar 

  60. McCarty 3rd, L.P., Buss, D.D., Datta, M.W., et al.: Complications observed following labral or rotator cuff repair with use of poly-L-lactic acid implants. J. Bone Joint Surg. Am. 95, 507–511 (2013)

    Article  Google Scholar 

  61. Papalia, R., Franceschi, F., Diaz Balzani, L., et al. The arthroscopic treatment of shoulder instability: bioabsorbable and standard metallic anchors produce equivalent clinical results. Arthroscopy (2014)

    Google Scholar 

  62. Gardner, M.P., Chong, A.C., Pollock, A.G., Wooley, P.H.: Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann. Biomed. Eng. 38, 613–620 (2010)

    Article  Google Scholar 

  63. Grover, P., Albert, C., Wang, M., Harris, G.F. Mechanical characterization of fourth generation composite humerus. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 225, 1169–1176 (2011)

    Google Scholar 

  64. Elfar, J., Menorca, R.M., Reed, J.D., Stanbury, S.: Composite bone models in orthopaedic surgery research and education. J. Am. Acad. Orthop. Surg. 22, 111–120 (2014)

    Article  Google Scholar 

  65. Saito, N., Murakami, N., Takahashi, J., et al.: Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins. Adv. Drug Deliv. Rev. 57, 1037–1048 (2005)

    Article  CAS  Google Scholar 

  66. Tan, H.L., Lin, W.T., Tang, T.T.: The use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments. Int. J. Artif. Organs 35, 832–839 (2012)

    CAS  Google Scholar 

  67. Ambrose, C.G., Clyburn, T.A., Mika, J., et al.: Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. J. Bone Joint Surg. Am. 96, 128–134 (2014)

    Article  Google Scholar 

  68. Fedorovich, N.E., Alblas, J., de Wijn, J.R., et al.: Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13, 1905–1925 (2007)

    Article  CAS  Google Scholar 

  69. Spiller, K.L., Maher, S.A., Lowman, A.M.: Hydrogels for the repair of articular cartilage defects. Tissue Eng. Part B, Rev. 17, 281–299 (2011)

    Article  CAS  Google Scholar 

  70. Kosuge, D., Khan, W.S., Haddad, B., Marsh, D.: Biomaterials and scaffolds in bone and musculoskeletal engineering. Curr. Stem Cell Res. Ther. 8, 185–191 (2013)

    Article  CAS  Google Scholar 

  71. Raftery, R., O’Brien, F.J., Cryan, S.A. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules (Basel, Switzerland) 18(5), 5611–5647 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine G. Ambrose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ambrose, C.G., Hartline, B.E., Clanton, T.O., Lowe, W.R., McGarvey, W.C. (2015). Polymers in Orthopaedic Surgery. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_5

Download citation

Publish with us

Policies and ethics