Skip to main content

Biodegradable Natural Polymers

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Natural polymers have proved to be useful in versatile applications, including controlled drug delivery, gene delivery, regenerative medicine, and other biomedical applications. These polymers are obtained primarily from plants, animals, and microbial sources which are again classified based on their chemistry into polysaccharide, protein, polyester, polyamide-based polymers. The in-depth surveys of these polymers reveals their malleable nature to be modified for various applications. Also, their responsive chemical linkages provide ease of biodegradability, which in turn makes them biocompatible. Their desirable features of ample abundance, biocompatibility, and biodegradability make them potential material for various uses. The eco-friendly profile of these polymers makes researchers inclined towards alluring natural polymers. This chapter describes natural polymers obtained from different sources and provides insights on the origin, chemistry, key features, applications, and marketed products of natural polymers that are being explored as adaptable materials in multifaceted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDs:

Cyclodextrin

HPMC:

Hydroxy propyl methyl cellulose

MCC:

Micro crystalline cellulose

GFR:

Glomerular filtration rate

DE:

Degree of esterification

SPIONs:

Super paramagnetic iron oxide nanoparticles

CaPG:

Calcium pectinate gel

KGM:

Konjac glucomannan

BSA:

Bovine serum albumin

AG:

Arabinogalactan

AGP:

Arabinogalactan protein

GAG:

Glycosaminoglycan

HA:

Hyaluronic acid

CS:

Chondroitin sulphate

ECM:

Extracellular matrix

HAS:

Hyaluronan synthases

IdoA:

l-iduronic acid

TC:

Tropocollagen

FACITs:

Fibril associated collagens with interrupted triple helices

MACITs:

Membrane associated collagens with interrupted triple helices

MULTIPLEXINS:

Multiple triple helix domains and interruptions

HSA:

Human serum albumin

EPR:

Enhanced permeability and retention effect

BMMNCs:

Bone marrow mono-nuclear cells

ADSCs:

Adipose derived stem cells

bFGF:

Basic fibroblast growth factor

FH:

Fibrin-H-chain

FL:

Fibrin-L-chain

RSF:

Regenerated silk fibroin

SFCS:

Silk fibroin chitosan scaffold

GalCS:

Galactosylated chitosan scaffold

PHA:

Poly hydroxy alkanoate

PHB:

Poly hydroxy butyrate

PHBV:

Poly (hydroxybutyrate-co-hydroxyvalerate)

PHBH:

Poly (hydroxybutyrate-co-hydroxyhexanoate)

PHBO:

Poly (hydroxybutyrate-co-hydroxyoctanoate)

sCL:

Short chain length

mCL:

Medium chain length

References

  1. Laza-Knoerr, A., Gref, R., Couvreur, P.: Cyclodextrins for drug delivery. J. Drug Target. 18(9), 645–656 (2010)

    CAS  Google Scholar 

  2. Challa, R., Ahuja, A., Ali, J., Khar, R.: Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech 6(2), E329–E357 (2005)

    Google Scholar 

  3. Muntimadugu, E., Ickowicz, D.E., Domb, A.J., Khan, W.: Polysaccharide biomaterials. Isr. J. Chem. 53(9–10), 787–794 (2013)

    CAS  Google Scholar 

  4. Vyas, A., Saraf, S., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62(1–2), 23–42 (2008)

    CAS  Google Scholar 

  5. Loftsson, T., Jarho, P., Masson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2(2), 335–351 (2005)

    CAS  Google Scholar 

  6. Khan, W., Muthupandian, S., Domb, A.J.: Cationic polymers for the delivery of therapeutic nucleotides. Nanotechnology for the Delivery of Therapeutic Nucleic Acids. Pan Stanford Publishing, Singapore (2013)

    Google Scholar 

  7. Swami, R., Singh, I., Khan, W., Ramakrishna, S.: Diseases originate and terminate by genes: unraveling nonviral gene delivery. Drug Deliv. Transl. Res. 3(6), 593–610 (2013)

    CAS  Google Scholar 

  8. Khan, W., Hosseinkhani, H., Ickowicz, D., Hong, P.D., Yu, D.S., Domb, A.J.: Polysaccharide gene transfection agents. Acta Biomater. 8(12), 4224–4232 (2012). S1742-7061(12)00459-X[pii]/j.actbio.2012.09.022

    CAS  Google Scholar 

  9. Merkus, F., Verhoef, J., Marttin, E., Romeijn, S., Van der Kuy, P., Hermens, W., Schipper, N.: Cyclodextrins in nasal drug delivery. Adv. Drug Deliv. Rev. 36(1), 41–57 (1999)

    CAS  Google Scholar 

  10. Loftsson, T., Brewster, M.E., Másson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2(4), 261–275 (2004)

    CAS  Google Scholar 

  11. Redenti, E., Pietra, C., Gerloczy, A., Szente, L.: Cyclodextrins in oligonucleotide delivery. Adv. Drug Deliv. Rev. 53(2), 235–244 (2001)

    CAS  Google Scholar 

  12. Neill, M.J., Mahony, A.M., Byrne, C., Darcy, R., Driscoll, C.M.: Gastrointestinal gene delivery by Cyclodextrins—In vitro quantification of extracellular barriers. Int. J. Pharm. 456(2), 390–399 (2013)

    Google Scholar 

  13. Lai, W.-F.: Cyclodextrins in non-viral gene delivery. Biomaterials 35(1), 401–411 (2014)

    CAS  Google Scholar 

  14. Tan, H., Qin, F., Chen, D., Han, S., Lu, W., Yao, X.: Study of glycol chitosan-carboxymethyl β-cyclodextrins as anticancer drugs carrier. Carbohydr. Polym. 93(2), 679–685 (2013)

    CAS  Google Scholar 

  15. Matsuda, H., Arima, H.: Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv. Rev. 36(1), 81–99 (1999)

    CAS  Google Scholar 

  16. Loftssona, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36(1), 59–79 (1999)

    CAS  Google Scholar 

  17. Bibby, D.C., Davies, N.M., Tucker, I.G.: Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 197(1), 1–11 (2000)

    CAS  Google Scholar 

  18. Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)

    CAS  Google Scholar 

  19. Aguilera J.M., Stanley D.W.: Microstructural principles of food processing and engineering, pp. 166–168. Springer, New York (1999)

    Google Scholar 

  20. Cosgrove, D.J.: Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6(11), 850–861 (2005)

    CAS  Google Scholar 

  21. Hon, D.N.S.: Cellulose and its derivatives: structures, reactions, and medical uses. In: Severian D. (ed.) Polysaccharides in Medicinal Applications, pp. 87–105. Marcel Dekker, New York (1996)

    Google Scholar 

  22. Conti, S., Maggi, L., Segale, L., Ochoa Machiste, E., Conte, U., Grenier, P., Vergnault, G.: Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int. J. Pharm. 333(1), 136–142 (2007)

    CAS  Google Scholar 

  23. Jamzad, S., Fassihi, R.: Development of a controlled release low dose class II drug-Glipizide. Int. J. Pharm. 312(1), 24–32 (2006)

    CAS  Google Scholar 

  24. Scheller, H.V., Ulvskov, P.: Hemicelluloses. Plant Biol. 61(1), 263–289 (2010)

    CAS  Google Scholar 

  25. Lerouxel, O., Cavalier, D.M., Liepman, A.H., Keegstra, K.: Biosynthesis of plant cell wall polysaccharides—a complex process. Curr. Opin. Plant Biol. 9(6), 621–630 (2006)

    CAS  Google Scholar 

  26. Elvira, C., Mano, J., San Roman, J., Reis, R.: Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23(9), 1955–1966 (2002)

    CAS  Google Scholar 

  27. Malafaya, P., Elvira, C., Gallardo, A., San Roman, J., Reis, R.: Porous starch-based drug delivery systems processed by a microwave route. J. Biomater. Sci. Polym. Ed. 12(11), 1227–1241 (2001)

    CAS  Google Scholar 

  28. Santander-Ortega, M., Stauner, T., Loretz, B., Ortega-Vinuesa, J., Bastos-González, D., Wenz, G., Schaefer, U., Lehr, C.: Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Controlled Release 141(1), 85–92 (2010)

    CAS  Google Scholar 

  29. Vilivalam, V.D., Illum, L., Iqbal, K.: Starch capsules: an alternative system for oral drug delivery. Pharm. Sci. Technol. Today 3(2), 64–69 (2000)

    CAS  Google Scholar 

  30. Izawa, K., Akiyama, K., Abe, H., Togashi, Y., Hasegawa, T.: Inulin-based glycopolymer: its preparation, lectin-affinity and gellation property. Bioorg. Med. Chem. 21(11), 2895–2902 (2013)

    CAS  Google Scholar 

  31. Akhgari, A., Farahmand, F., Afrasiabi Garekani, H., Sadeghi, F., Vandamme, T.F.: Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur. J. Pharm. Sci. 28(4), 307–314 (2006)

    CAS  Google Scholar 

  32. Maris, B., Verheyden, L., Van Reeth, K., Samyn, C., Augustijns, P., Kinget, R., Van den Mooter, G.: Synthesis and characterisation of inulin-azo hydrogels designed for colon targeting. Int. J. Pharm. 213(1), 143–152 (2001)

    CAS  Google Scholar 

  33. Pitarresi, G., Giacomazza, D., Triolo, D., Giammona, G., San Biagio, P.L.: Rheological characterization and release properties of inulin-based hydrogels. Carbohydr. Polym. 88(3), 1033–1040 (2012)

    CAS  Google Scholar 

  34. Mohnen, D.: Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11(3), 266–277 (2008)

    CAS  Google Scholar 

  35. Liu, L., Fishman, M.L., Kost, J., Hicks, K.B.: Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24(19), 3333–3343 (2003)

    CAS  Google Scholar 

  36. Jung, J., Arnold, R.D., Wicker, L.: Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf. B Biointerfaces 104, 116–121 (2013)

    CAS  Google Scholar 

  37. Munjeri, O., Collett, J., Fell, J.: Hydrogel beads based on amidated pectins for colon-specific drug delivery: the role of chitosan in modifying drug release. J. Controlled Release 46(3), 273–278 (1997)

    CAS  Google Scholar 

  38. Fernandez-Hervas, M., Fell, J.: Pectin/chitosan mixtures as coatings for colon-specific drug delivery: an in vitro evaluation. Int. J. Pharm. 169(1), 115–119 (1998)

    CAS  Google Scholar 

  39. Itoh, K., Yahaba, M., Takahashi, A., Tsuruya, R., Miyazaki, S., Dairaku, M., Togashi, M., Mikami, R., Attwood, D.: In situ gelling xyloglucan/pectin formulations for oral sustained drug delivery. Int. J. Pharm. 356(1), 95–101 (2008)

    CAS  Google Scholar 

  40. Dutta, R.K., Sahu, S.: Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci. 2, 38–45 (2012)

    Google Scholar 

  41. Smistad, G., Boyum, S., Alund, S.J., Samuelsen, A.B.C., Hiorth, M.: The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydr. Polym. 90(3), 1337–1344 (2012)

    CAS  Google Scholar 

  42. Kumar, P., Ramya, C., Jayakumar, R., Lakshmanan, V.-K.: Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds. Colloids Surf. B Biointerfaces 106, 109–116 (2013)

    CAS  Google Scholar 

  43. Luppi, B., Bigucci, F., Abruzzo, A., Corace, G., Cerchiara, T., Zecchi, V.: Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur. J. Pharm. Biopharm. 75(3), 381–387 (2010)

    CAS  Google Scholar 

  44. Katsuraya, K., Okuyama, K., Hatanaka, K., Oshima, R., Sato, T., Matsuzaki, K.: Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr. Polym. 53(2), 183–189 (2003)

    CAS  Google Scholar 

  45. Fan, J., Wang, K., Liu, M., He, Z.: In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydr. Polym. 73(2), 241–247 (2008)

    CAS  Google Scholar 

  46. Alvarez-Mancenido, F., Landin, M., Lacik, I., Martinez-Pacheco, R.: Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs. Int. J. Pharm. 349(1), 11–18 (2008)

    CAS  Google Scholar 

  47. Wen, X., Wang, T., Wang, Z., Li, L., Zhao, C.: Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix. Int. J. Biol. Macromol. 42(3), 256–263 (2008)

    CAS  Google Scholar 

  48. Prabaharan, M.: Prospective of guar gum and its derivatives as controlled drug delivery systems. Int. J. Biol. Macromol. 49(2), 117–124 (2011)

    CAS  Google Scholar 

  49. Shukla, R.K., Tiwari, A.: Carbohydrate polymers: Applications and recent advances in delivering drugs to the colon. Carbohydr. Polym. 88(2), 399–416 (2012)

    CAS  Google Scholar 

  50. Krishnaiah, Y., Satyanarayana, S., Rama Prasad, Y., Narasimha Rao, S.: Evaluation of guar gum as a compression coat for drug targeting to colon. Int. J. Pharm. 171(2), 137–146 (1998)

    CAS  Google Scholar 

  51. Prasad, Y., Krishnaiah, Y., Satyanarayana, S.: In vitro evaluation of guar gum as a carrier for colon-specific drug delivery. J. Controlled Release 51(2), 281–287 (1998)

    CAS  Google Scholar 

  52. Li, X., Wu, W., Wang, J., Duan, Y.: The swelling behavior and network parameters of guar gum/poly (acrylic acid) semi-interpenetrating polymer network hydrogels. Carbohydr. Polym. 66(4), 473–479 (2006)

    CAS  Google Scholar 

  53. George, M., Abraham, T.: pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int. J. Pharm. 335(1), 123–129 (2007)

    CAS  Google Scholar 

  54. Krishnaiah, Y., Karthikeyan, R., Gouri Sankar, V., Satyanarayana, V.: Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J. Controlled Release 81(1), 45–56 (2002)

    CAS  Google Scholar 

  55. Krishnaiah, Y., Karthikeyan, R., Satyanarayana, V.: A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int. J. Pharm. 241(2), 353–366 (2002)

    CAS  Google Scholar 

  56. Li, X., Wu, W., Liu, W.: Synthesis and properties of thermo-responsive guar gum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carbohydr. Polym. 71(3), 394–402 (2008)

    CAS  Google Scholar 

  57. Thakur, S., Chauhan, G.S., Ahn, J.-H.: Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of l-DOPA and l-tyrosine. Carbohydr. Polym. 76(4), 513–520 (2009)

    CAS  Google Scholar 

  58. Ponder, G.R.: Arabinogalactan from Western larch. Part IV. Polymeric products of partial acid hydrolysis. Carbohydr. Polym. 36(1), 1–14 (1998)

    CAS  Google Scholar 

  59. Showalter, A.: Arabinogalactan-proteins: structure, expression and function. Cell. Mol. Life Sci. 58(10), 1399–1417 (2001)

    CAS  Google Scholar 

  60. Parveen, S., Gupta, A.D., Prasad, R.: Arabinogalactan protein from Arachis hypogaea: Role as carrier in drug-formulations. Int. J. Pharm. 333(1), 79–86 (2007)

    CAS  Google Scholar 

  61. Prescott, J.H., Enriquez, P., Jung, C., Menz, E., Groman, E.V.: Larch arabinogalactan for hepatic drug delivery: isolation and characterization of a 9 kDa arabinogalactan fragment. Carbohydr. Res. 278(1), 113–128 (1995)

    CAS  Google Scholar 

  62. Avramoff, A., Khan, W., Mizrahi, B., Domb, A.J.: Preparation and characterization of a novel once-daily formulation of diltiazem using arabinogalactan as a channeling agent. J. Appl. Polym. Sci. 126(S1), E197–E203 (2012)

    Google Scholar 

  63. Ehrenfreund-Kleinman, T., Azzam, T., Falk, R., Polacheck, I., Golenser, J., Domb, A.: Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. Biomaterials 23(5), 1327–1335 (2002)

    CAS  Google Scholar 

  64. Ehrenfreund-Kleinman, T., Gazit, Z., Gazit, D., Azzam, T., Golenser, J., Domb, A.: Synthesis and biodegradation of arabinogalactan sponges prepared by reductive amination. Biomaterials 23(23), 4621–4631 (2002)

    CAS  Google Scholar 

  65. Ehrenfreund-Kleinman, T., Golenser, J., Domb, A.J.: Conjugation of amino-containing drugs to polysaccharides by tosylation: amphotericin B-arabinogalactan conjugates. Biomaterials 25(15), 3049–3057 (2004)

    CAS  Google Scholar 

  66. Daniel-da-Silva, A.L., Ferreira, L., Gil, A.M., Trindade, T.: Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J. Colloid Interface Sci. 355(2), 512–517 (2011)

    CAS  Google Scholar 

  67. Keppeler, S., Ellis, A., Jacquier, J.: Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym. 78(4), 973–977 (2009)

    CAS  Google Scholar 

  68. Sukhlaaied, W., Riyajan, S.-A.: Synthesis and properties of carrageenan grafted copolymer with poly (vinyl alcohol). Carbohydr. Polym. 98(1), 677–685 (2013)

    CAS  Google Scholar 

  69. Necas, J., Bartosikova, L.: Carrageenan: a review. Vet. Med. 58(4), 187–205 (2013)

    CAS  Google Scholar 

  70. Hezaveh, H., Muhamad, I.I.: Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 91(3), 508–519 (2013)

    CAS  Google Scholar 

  71. Kianfar, F., Antonijevic, M., Chowdhry, B., Boateng, J.S.: Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs. Colloids Surf. B Biointerfaces 103, 99–106 (2013)

    CAS  Google Scholar 

  72. Kulkarni, R.V., Boppana, R., Krishna Mohan, G., Mutalik, S., Kalyane, N.V.: pH-responsive interpenetrating network hydrogel beads of poly (acrylamide)-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J. Colloid Interface Sci. 367(1), 509–517 (2012)

    CAS  Google Scholar 

  73. Leong, K.H., Chung, L.Y., Noordin, M.I., Mohamad, K., Nishikawa, M., Onuki, Y., Morishita, M., Takayama, K.: Carboxymethylation of kappa-carrageenan for intestinal-targeted delivery of bioactive macromolecules. Carbohydr. Polym. 83(4), 1507–1515 (2011)

    CAS  Google Scholar 

  74. Makino, K., Idenuma, R., Murakami, T., Ohshima, H.: Design of a rate-and time-programming drug release device using a hydrogel: pulsatile drug release from κ-carrageenan hydrogel device by surface erosion of the hydrogel. Colloids Surf. B Biointerfaces 20(4), 355–359 (2001)

    CAS  Google Scholar 

  75. Leong, K.H., Chung, L.Y., Noordin, M.I., Onuki, Y., Morishita, M., Takayama, K.: Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr. Polym. 86(2), 555–565 (2011)

    CAS  Google Scholar 

  76. Malafaya, P.B., Silva, G.A., Reis, R.L.: Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59(4), 207–233 (2007)

    CAS  Google Scholar 

  77. Vaz, C.M., Van Doeveren, P., Reis, R., Cunha, A.: Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer 44(19), 5983–5992 (2003)

    CAS  Google Scholar 

  78. Vaz, C., Fossen, M., Van Tuil, R., De Graaf, L., Reis, R., Cunha, A.: Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. J. Biomed. Mater. Res. Part A 65(1), 60–70 (2003)

    CAS  Google Scholar 

  79. Ruggiero, F., Exposito, J.-Y., Bournat, P., Gruber, V., Perret, S., Comte, J., Olagnier, B., Garrone, R., Theisen, M.: Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett. 469(1), 132–136 (2000)

    CAS  Google Scholar 

  80. Shoseyov O., Amitai H., Posen Y., Yaari A., Shilo S., Roth S., Dgany O., Tal T., Lapidot N.: Large-scale molecular farming of recombinant human collagen in transgenic tobacco (2010)

    Google Scholar 

  81. Kolattukudy P.E.: Polyesters in higher plants. In: Biopolyesters, pp. 1–49. Springer, New York (2001)

    Google Scholar 

  82. Dutta, P.K., Dutta, J., Tripathi, V.: Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. 63(1), 20–31 (2004)

    CAS  Google Scholar 

  83. Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    CAS  Google Scholar 

  84. de Alvarenga E.S.: Characterization and properties of chitosan. In: Biotechnology of Biopolymers, p. 91. (2011)

    Google Scholar 

  85. Bansal P., Verma S., Khan W., Kumar N.: Global patent and technological status of biodegradable polymers in drug delivery and tissue engineering. In: Biodegradable Polymers in Clinical Use and Clinical Development, pp. 665–725. Wiley, New York. doi:10.1002/9781118015810.ch18

  86. Di Martino, A., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30), 5983–5990 (2005)

    Google Scholar 

  87. Malafaya, P., Pedro, A., Peterbauer, A., Gabriel, C., Redl, H., Reis, R.: Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J. Mater. Sci. Mater. Med. 16(12), 1077–1085 (2005)

    CAS  Google Scholar 

  88. Necas, J., Bartosikova, L., Brauner, P., Kolar, J.: Hyaluronic acid (hyaluronan): a review. Vet. Med. 53(8), 397–411 (2008)

    CAS  Google Scholar 

  89. Burdick, J.A., Prestwich, G.D.: Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23(12), H41–H56 (2011)

    CAS  Google Scholar 

  90. Sintov, A., Di-Capua, N., Rubinstein, A.: Cross-linked chondroitin sulphate: characterization for drug delivery purposes. Biomaterials 16(6), 473–478 (1995)

    CAS  Google Scholar 

  91. Chang, C.H., Liu, H.C., Lin, C.C., Chou, C.H., Lin, F.H.: Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26), 4853–4858 (2003)

    CAS  Google Scholar 

  92. Lee, C.H., Singla, A., Lee, Y.: Biomedical applications of collagen. Int. J. Pharm. 221(1), 1–22 (2001)

    CAS  Google Scholar 

  93. Khan W., Yadav D., Domb A.J., Kumar N.: Collagen. Biodegradable polymers in clinical use and clinical development: 59–89 (2011)

    Google Scholar 

  94. Gelse, K., Pöschl, E., Aigner, T.: Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55(12), 1531–1546 (2003)

    CAS  Google Scholar 

  95. Neel, E.A.A., Bozec, L., Knowles, J.C., Syed, O., Mudera, V., Day, R., Hyun, J.K.: Collagen—emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev. 65(4), 429–456 (2013)

    Google Scholar 

  96. Brown, J., Timpl, R.: The collagen superfamily. Int. Arch. Allergy Immunol. 107(4), 484–490 (1995)

    CAS  Google Scholar 

  97. Friess, W.: Collagen–biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 45(2), 113–136 (1998)

    CAS  Google Scholar 

  98. von der Mark, K.: Structure, biosynthesis and gene regulation of collagens in cartilage and bone, pp. 3–26. Academic Press, Orlando (1999)

    Google Scholar 

  99. Das, S., Khan, W., Mohsin, S., Kumar, N.: Miltefosine loaded albumin microparticles for treatment of visceral leishmaniasis: formulation development and in vitro evaluation. Polym. Adv. Technol. 22(1), 172–179 (2010). doi:10.1002/pat.1710

    Google Scholar 

  100. Ledward D., Phillips G., Williams P.: Gelatin. In: Handbook of Hydrocolloids, pp. 67–86. (2000)

    Google Scholar 

  101. Kratz, F.: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Controlled Release 132(3), 171–183 (2008)

    CAS  Google Scholar 

  102. Elzoghby, A.O., Samy, W.M., Elgindy, N.A.: Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Controlled Release 157(2), 168–182 (2012)

    CAS  Google Scholar 

  103. Domb A.J., Khan W.: Biodegradable polymers as drug carrier systems. In: Dumitriu S., Popa C. (eds) Polymeric Biomaterials, pp. 135–176. CRC Press, Boca Raton (2013)

    Google Scholar 

  104. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., Ascenzi, P.: The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57(12), 787–796 (2005)

    CAS  Google Scholar 

  105. Hu, Y.J., Liu, Y., Sun, T.Q., Bai, A.M., Lü, J.Q., Pi, Z.B.: Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int. J. Biol. Macromol. 39(4), 280–285 (2006)

    CAS  Google Scholar 

  106. Roche, M., Rondeau, P., Singh, N.R., Tarnus, E., Bourdon, E.: The antioxidant properties of serum albumin. FEBS Lett. 582(13), 1783–1787 (2008)

    CAS  Google Scholar 

  107. Khan, W., Kumar, N.: Drug targeting to macrophages using paromomycin-loaded albumin microspheres for treatment of visceral leishmaniasis: an in vitro evaluation. J. Drug Target. 19(4), 239–250 (2011). doi:10.3109/1061186X.2010.492524

    CAS  Google Scholar 

  108. Haisch, A., Loch, A., David, J., Pruss, A., Hansen, R., Sittinger, M.: Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med. Biol. Eng. Comput. 38(6), 686–689 (2000)

    CAS  Google Scholar 

  109. Furst, W., Banerjee, A., Redl, H.: Comparison of structure, strength and cytocompatibility of a fibrin matrix supplemented either with tranexamic acid or aprotinin. J. Biomed. Mater. Res. B Appl. Biomater. 82(1), 109–114 (2007)

    Google Scholar 

  110. Han, D., Liu, W., Ao, Q., Wang, G.: Optimal delivery systems for bone morphogenetic proteins in orthopedic applications should model initial tissue repair structures by using a heparin-incorporated fibrin-fibronectin matrix. Med. Hypotheses 71(3), 374–378 (2008)

    CAS  Google Scholar 

  111. Sathian, J., Sastry, T., Suguna, L., Lakshminarayana, Y., Radhakrishnan, G.: Fibrin as a matrix for grafting 2-hydroxyethyl methacrylate: Preparation and characterization of the graft and its in vivo evaluation for wound healing. J. Biomed. Mater. Res., Part A 65(4), 435–440 (2003)

    CAS  Google Scholar 

  112. Ryu, J.H., Kim, I.-K., Cho, S.-W., Cho, M.-C., Hwang, K.-K., Piao, H., Piao, S., Lim, S.H., Hong, Y.S., Choi, C.Y.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3), 319–326 (2005)

    CAS  Google Scholar 

  113. Kumar, T., Vasantha Bai, M., Krishnan, L.K.: A freeze-dried fibrin disc as a biodegradable drug release matrix. Biologicals 32(1), 49–55 (2004)

    CAS  Google Scholar 

  114. Shim, G., Im, S., Lee, S., Park, J.Y., Kim, J., Jin, H., Lee, S., Im, I., Kim, D.-D., Kim, S.W.: Enhanced survival of transplanted human adipose-derived stem cells by co-delivery with liposomal apoptosome inhibitor in fibrin gel matrix. Eur. J. Pharm. Biopharm. 85(3), 673–681 (2013)

    CAS  Google Scholar 

  115. Jin, J., Hassanzadeh, P., Perotto, G., Sun, W., Brenckle, M.A., Kaplan, D., Omenetto, F.G., Rolandi, M.: A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. Adv. Mater. 25(32), 4482–4487 (2013)

    CAS  Google Scholar 

  116. Miroiu, F., Socol, G., Visan, A., Stefan, N., Craciun, D., Craciun, V., Dorcioman, G., Mihailescu, I., Sima, L., Petrescu, S.: Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater. Sci. Eng. B169(1), 151–158 (2010)

    Google Scholar 

  117. Wang, Y., Bella, E., Lee, C.S., Migliaresi, C., Pelcastre, L., Schwartz, Z., Boyan, B.D., Motta, A.: The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials 31(17), 4672–4681 (2010)

    CAS  Google Scholar 

  118. Altman, A.M., Gupta, V., Ríos, C.N., Alt, E.U., Mathur, A.B.: Adhesion, migration and mechanics of human adipose-tissue-derived stem cells on silk fibroin-chitosan matrix. Acta Biomater. 6(4), 1388–1397 (2010)

    CAS  Google Scholar 

  119. Kasoju, N., Bora, U.: Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed. Mater. 7(4), 045004 (2012)

    Google Scholar 

  120. Liu, Y., Liu, H., Qian, J., Deng, J., Yu, T.: Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen peroxide utilizing methylene blue as electron shuttle. Anal. Chim. Acta 316(1), 65–72 (1995)

    CAS  Google Scholar 

  121. Farag, Y., Leopold, C.S.: Development of shellac-coated sustained release pellet formulations. Eur. J. Pharm. Sci. 42(4), 400–405 (2011)

    CAS  Google Scholar 

  122. Limmatvapirat, S., Limmatvapirat, C., Puttipipatkhachorn, S., Nunthanid, J., Luangtana-anan, M., Sriamornsak, P.: Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process. Eur. J. Pharm. Biopharm. 69(3), 1004–1013 (2008)

    CAS  Google Scholar 

  123. Soradech, S., Limatvapirat, S., Luangtana-anan, M.: Stability enhancement of shellac by formation of composite film: effect of gelatin and plasticizers. J. Food Eng. 116(2), 572–580 (2013)

    CAS  Google Scholar 

  124. Yu, C.-Y., Yin, B.-C., Zhang, W., Cheng, S.-X., Zhang, X.-Z., Zhuo, R.-X.: Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf. B Biointerfaces 68(2), 245–249 (2009)

    CAS  Google Scholar 

  125. Hornig, S., Bunjes, H., Heinze, T.: Preparation and characterization of nanoparticles based on dextran–drug conjugates. J. Colloid Interface Sci. 338(1), 56–62 (2009)

    CAS  Google Scholar 

  126. Saboktakin, M.R., Tabatabaie, R., Maharramov, A., Ramazanov, M.A.: Synthesis and characterization of superparamagnetic chitosan–dextran sulfate hydrogels as nano carriers for colon-specific drug delivery. Carbohydr. Polym. 81(2), 372–376 (2010)

    CAS  Google Scholar 

  127. Shu, S., Zhang, X., Wu, Z., Wang, Z., Li, C.: Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan. J. Controlled Release 152, e170–e172 (2011)

    CAS  Google Scholar 

  128. Brondsted, H., Andersen, C., Hovgaard, L.: Crosslinked dextran—a new capsule material for colon targeting of drugs. J. Controlled Release 53(1), 7–13 (1998)

    CAS  Google Scholar 

  129. Cortesi, R., Esposito, E., Osti, M., Menegatti, E., Squarzoni, G., Spencer Davis, S., Nastruzzi, C.: Dextran cross-linked gelatin microspheres as a drug delivery system. Eur. J. Pharm. Biopharm. 47(2), 153–160 (1999)

    CAS  Google Scholar 

  130. Hovgaard, L., Brondsted, H.: Dextran hydrogels for colon-specific drug delivery. J. Controlled Release 36(1), 159–166 (1995)

    CAS  Google Scholar 

  131. Rehm, B.H.: Bacterial polymers: biosynthesis, modifications and applications. Nat. Rev. Microbiol. 8(8), 578–592 (2010)

    CAS  Google Scholar 

  132. Averous L., Pollet E.: Biodegradable polymers. In: Environmental Silicate Nano-Biocomposites, pp. 13–39. Springer, New York

    Google Scholar 

  133. Nair L.S., Laurencin C.T.: Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Tissue Engineering I, pp. 47–90. Springer, New York (2006)

    Google Scholar 

  134. Ueda, H., Tabata, Y.: Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv. Drug Deliv. Rev. 55(4), 501–518 (2003)

    CAS  Google Scholar 

  135. Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8), 762–798 (2007)

    CAS  Google Scholar 

  136. Ashiuchi M., Misono H.: Poly γ glutamic Acid. Biopolymers Online (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doppalapudi, S., Katiyar, S., Domb, A.J., Khan, W. (2015). Biodegradable Natural Polymers. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_2

Download citation

Publish with us

Policies and ethics