Skip to main content

Polymer Based Biosensors for Medical Applications

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic, environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part. The second part will focus on conducting polymers, used as electrode material in devices based on electrochemical detection. A third part will describe the molecularly imprinted technology, where the target is replicated in 3D negative form into the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

COC:

Cyclic olefin copolymer

CP:

Conductive polymers or intrinsically conducting polymers

DNA:

Deoxyribonucleic acid

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

EGCG:

Epigallocatechin-3-gallate

ELISA:

Enzyme-linked immunosorbent assay

GOx:

Glucose oxidase

IUPAC:

International Union of Pure and Applied Chemistry

ITO:

Indium tin oxide

LOD:

Limit of detection

MIP:

Molecularly imprinted polymer

NIP:

Non imprinted polymer

NHS:

N-Hydroxysuccinimide

NTA:

Nitrilotriacetic acid

PANI:

Polyaniline

PDMS:

Polydimethylsiloxane

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PMMA:

Poly(methyl methacrylate)

POC:

Point of care

PPy:

Polypyrrole

QD:

Quantum dots

RNA:

Ribonucleic acid

SELEX:

Systematic evolution of ligands by exponential enrichment

ssDNA:

Single stranded DNA

UV:

Ultraviolet

v/v:

Volume to volume

References

  1. Turner, A.: Biosensors: then and now. Trends Biotechnol. 31(3), 119–120 (2013)

    Article  CAS  Google Scholar 

  2. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)

    Article  CAS  Google Scholar 

  3. Turner, A.P.F.: Biosensors: sense and sensibility. Chem. Soc. Rev. 42(8), 3184–3196 (2013)

    Article  CAS  Google Scholar 

  4. McNaught, A.D., Wilkinson, A.: IUPAC Compendium of Chemical Terminology, 2nd edn. Blackwell Scientific Publications, Oxford (1997)

    Google Scholar 

  5. Chambers, J.P., et al.: Biosensor recognition elements. Current Issues Mole. Biol. 10(1–2), 1–12 (2008)

    CAS  Google Scholar 

  6. Bhalerao, K., Nistala, G.: Biomolecular Components of a Biosensor. Series on Biomedical Nanotechnology, pp. 1–20. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  7. Daniels, J.S., Pourmand, N.: Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12), 1239–1257 (2007)

    Article  CAS  Google Scholar 

  8. Sharma, A., Rogers, K.R.: Biosensors. Meas. Sci. Technol. 5(5), 461–472 (1994)

    Article  CAS  Google Scholar 

  9. Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008)

    Article  CAS  Google Scholar 

  10. Song, K.-M., Lee, S., Ban, C.: Aptamers and their biological applications. Sensors 12(1), 612–631 (2012)

    Article  Google Scholar 

  11. Jayasena, S.D.: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628–1650 (1999)

    CAS  Google Scholar 

  12. Hamula, C., et al.: Selection and analytical applications of aptamers. TrAC Trends Anal. Chem. 25(7), 681–691 (2006)

    Article  CAS  Google Scholar 

  13. Song, S., et al.: Aptamer-based biosensors. TrAC Trends Anal. Chem. 27(2), 108–117 (2008)

    Article  CAS  Google Scholar 

  14. Bini, A., et al.: Analytical performances of aptamer-based sensing for thrombin detection. Anal. Chem. 79(7), 3016–3019 (2007)

    Article  CAS  Google Scholar 

  15. Xiao, Y., et al.: Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. Engl. 44(34), 5456–5459 (2005)

    Article  CAS  Google Scholar 

  16. Mosbach, K.: Molecular imprinting. Trends Biochem. Sci. 19(1), 9–14 (1994)

    Article  CAS  Google Scholar 

  17. Haupt, K., Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100(7), 2495–2504 (2000)

    Article  CAS  Google Scholar 

  18. Feng, X., et al.: A living cell-based biosensor utilizing G-protein coupled receptors: principles and detection methods. Biosens. Bioelectron. 22(12), 3230–3237 (2007)

    Article  CAS  Google Scholar 

  19. Nascimento, G.A., et al.: Electrochemical DNA biosensor for bovine papillomavirus detection using polymeric film on screen-printed electrode. Biosens. Bioelectron. 38(1), 61–66 (2012)

    Article  CAS  Google Scholar 

  20. Hopkins, N.E.: Antibody engineering for biosensor applications. In: Zourob, M. (ed.) Recognition Receptors in Biosensors SE-12 pp. 451–529. Springer, New York (2010). doi:10.1007/978-1-4419-0919-0_12

    Google Scholar 

  21. Dugas, V., Elaissari, A., Chevalier, Y.: Surface sensitization techniques and recognition receptors immobilization on biosensors and microarrays. In: Zourob, M. (ed.) Recognition Receptors in Biosensors SE-2 pp. 47–134. Springer, New York (2010). doi:10.1007/978-1-4419-0919-0_2

    Google Scholar 

  22. Hermanson, G.T.: Zero-length crosslinkers. In: Hermanson, G.T. (ed.) Bioconjug. Tech. pp. 259–273. Academic Press, Boston (2013)

    Google Scholar 

  23. Spichiger-Keller, U.E.: Chemical and Biochemical Sensors. In Spichiger-Keller U.E. (ed.) Chemical Sensors and Biosensors for Medical and Biological Applications, pp. 33–81. Wiley-VCH Verlag GmbH, German (1998). doi:10.1002/9783527612284.ch2

  24. Liu, G.-Y., et al.: Colorimetric detection of carbenicillin using cationic polythiophene derivatives. Chin. J. Polym. Sci. 31(11), 1484–1490 (2013)

    Article  CAS  Google Scholar 

  25. Pohanka, M., Skládal, P.: Electrochemical biosensors—principles and applications. J. Appl. Biomed. 6(2), 57–64 (2008)

    CAS  Google Scholar 

  26. Grieshaber, D., et al.: Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)

    Article  CAS  Google Scholar 

  27. Bakker, E., Pretsch, E.: Potentiometric sensors for trace-level analysis. Trends Anal. Chem. TRAC 24(3), 199–207 (2005)

    Article  CAS  Google Scholar 

  28. Janata, J.: Principles of Chemical Sensors. Springer, USA (2009)

    Book  Google Scholar 

  29. Lisdat, F., Schäfer, D.: The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008)

    Article  CAS  Google Scholar 

  30. Datar, R., et al.: Cantilever sensors: nanomechanical tools for diagnostics. MRS Bull. 34(06), 449–454 (2009)

    Article  CAS  Google Scholar 

  31. Lang, H., Hegner, M., Gerber, C.: Cantilever array sensors. Mater. Today 8(4), 30–36 (2005)

    Article  CAS  Google Scholar 

  32. Hierlemann, A., et al.: Microfabrication techniques for chemical/biosensors. Proc. IEEE 91(6), 839–863 (2003)

    Article  CAS  Google Scholar 

  33. Tsao, C.-W., DeVoe, D.: Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6(1), 1–16 (2009)

    Article  CAS  Google Scholar 

  34. Wynne, K.J., Street, G.B.: Conducting polymers. A short review. Ind. Eng. Chem. Prod. Res. Dev. 21(1), 23–28 (1982)

    Article  CAS  Google Scholar 

  35. Gerard, M.: Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)

    Article  CAS  Google Scholar 

  36. Hush, N.S.: An overview of the first half-century of molecular electronics. Ann. N. Y. Acad. Sci. 1006(1), 1–20 (2003)

    Article  CAS  Google Scholar 

  37. Malhotra, B.D., Chaubey, A., Singh, S.P.: Prospects of conducting polymers in biosensors. Anal. Chim. Acta 578(1), 59–74 (2006)

    Article  CAS  Google Scholar 

  38. Ates, M.: A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C: Mater. Biol. Appl. 33(4), 1853–1859 (2013)

    Article  CAS  Google Scholar 

  39. Dzugan, T.: Electrical properties of PEDOT. Electron Technol 2009 ISSE 2009 32ND Int SPRING Semin Electron Technol, pp. 101–104 (2009). doi:10.1109/ISSE.2009.5207058

  40. Dai, L.: Conducting Polymers. Engineering Materials and Processes, pp. 41–80. Springer, London (2004)

    Google Scholar 

  41. Kivelson, S., Heeger, A.J.: Theory of the soliton-lattice to polaron-lattice transition in conducting polymers. Synth. Met. 17(1–3), 183–188 (1987)

    Article  CAS  Google Scholar 

  42. Kivelson, S., Heeger, A.J.: Intrinsic conductivity of conducting polymers. Synth. Met. 22(4), 371–384 (1988)

    Article  CAS  Google Scholar 

  43. Shirakawa, H., et al.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  44. Chiang, C.K., et al.: Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc. 100(3), 1013–1015 (1978)

    Article  CAS  Google Scholar 

  45. Vernitskaya, T.V., Efimov, O.N.: Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 66(5), 443–457 (1997)

    Article  Google Scholar 

  46. Ćirić-Marjanović, G.: Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Article  Google Scholar 

  47. Lee, K., et al.: Metallic transport in polyaniline. Nature 441(7089), 65–68 (2006)

    Article  CAS  Google Scholar 

  48. Dhand, C., et al.: Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 26(6), 2811–2821 (2011)

    Article  CAS  Google Scholar 

  49. Giannoudi, L., Piletska, E.V., Piletsky, S.A.: Development of biosensors for the detection of hydrogen peroxide.In: Giardi, M.T., Piletska E.V. (eds.) Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices, pp. 175–191. Springer, New York (2006)

    Google Scholar 

  50. Chairam, S., Buddhalee, P., Amatatongchai, M.: A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on poly(aniline-co-o-aminobenzoic acid) modified glassy carbon electrode coated with chitosan film. Int. J. Electrochem. Sci. 8(8), 10250–10264 (2013)

    CAS  Google Scholar 

  51. Srivastava, M., et al.: A chitosan-based polyaniline-Au nanocomposite biosensor for determination of cholesterol. Anal. Methods 6(3), 817–824 (2014)

    Article  CAS  Google Scholar 

  52. Xiang, C., et al.: Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite. Talanta 110, 96–100 (2013)

    Article  CAS  Google Scholar 

  53. Radhapyari, K., et al.: Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111, 47–53 (2013)

    Article  CAS  Google Scholar 

  54. Ruecha, N., et al.: Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 52, 13–19 (2014)

    Article  CAS  Google Scholar 

  55. Tamer U., et al. Fabrication of biosensor based on polyaniline/gold nanorod composite. Int. J. Electrochem. (2011)

    Google Scholar 

  56. Anu Prathap, M.U., et al.: Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal. Chem. 84(15), 6672–6678 (2012)

    Article  CAS  Google Scholar 

  57. Batra, B., et al.: Fabrication of a cytochrome c biosensor based on cytochrome oxidase/NiO-NPs/cMWCNT/PANI modified Au electrode. J. Biomed. Nanotechnol. 9(3), 409–416 (2013)

    Article  CAS  Google Scholar 

  58. Batra, B., Kumari, S., Pundir, C.S.: Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode. Enzym. Microbial Technol. 57, 69–77 (2014)

    Article  CAS  Google Scholar 

  59. Lee, I., et al.: Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosens. Bioelectron. 26(7), 3297–3302 (2011)

    Article  CAS  Google Scholar 

  60. Geetha, S., et al.: Biosensing and drug delivery by polypyrrole. Anal. Chim. Acta 568(1–2), 119–125 (2006)

    Article  CAS  Google Scholar 

  61. Kang, H.C., Geckeler, K.E.: Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer 41(18), 6931–6934 (2000)

    Article  CAS  Google Scholar 

  62. Mohammad, F., Calvert, P.D., Billingham, N.C.: Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull. Mater. Sci. 18(3), 255–261 (1995)

    Article  CAS  Google Scholar 

  63. Xu, H., et al.: Label-free impedimetric thrombin sensor based on poly (pyrrole–nitrilotriacetic acid)–aptamer film. Biosens. Bioelectron. 41, 90–95 (2013)

    Article  Google Scholar 

  64. Rodriguez, M.I., Alocilja, E.C.: Embedded DNA-polypyrrole biosensor for rapid detection of Escherichia Coli. IEEE Sens. J. 5(4), 733–736 (2005)

    Article  CAS  Google Scholar 

  65. Olea, D., Moreau, P., Faure, C.: Polypyrrole-glucose oxidase biosensor. Effect of enzyme encapsulation in multilamellar vesicles on film growth and morphology. J. Electroanal. Chem. 605(2), 125–135 (2007)

    Article  CAS  Google Scholar 

  66. Olea, D., Moreau, P., Faure, C.: Polypyrrole†glucose oxidase biosensor. Effect of enzyme encapsulation in multilamellar vesicles on film growth and morphology. J. Electroanal. Chem. 605(2), 125–135 (2007)

    Article  CAS  Google Scholar 

  67. Olea, D., Viratelle, O., Faure, C.: Polypyrrole-glucose oxidase biosensor. Effect of enzyme encapsulation in multilamellar vesicles on analytical properties. Biosens. Bioelectron. 23(6), 788–94 (2008)

    Article  CAS  Google Scholar 

  68. Elschner, A., et al.: The Discovery and Development of Conducting Polymers, pp. 1–20. CRC Press, Boca Raton (2010)

    Google Scholar 

  69. Rozlosnik, N.: New directions in medical biosensors employing poly (3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal. Bioanal. Chem. 395(3), 637–645 (2009)

    Article  CAS  Google Scholar 

  70. Corradi, R., Armes, S.P., Sciences, M.: Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth. Met. 84(1), 453–454 (1997)

    Article  CAS  Google Scholar 

  71. Huang, J., et al.: Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films. Adv. Funct. Mater. 15(2), 290–296 (2005)

    Article  CAS  Google Scholar 

  72. Elschner, A., et al.: The in situ polymerization of EDOT to PEDOT. PEDOT, pp. 91–111. CRC Press, Boca Raton (2010)

    Chapter  Google Scholar 

  73. Reuter, K., Kirchmeyer, S., Elschner, A.: PEDOT–Properties and Technical Relevance, Handb. Thiophene-Based Mater. pp. 549–576. Wiley, Hoboken (2009)

    Google Scholar 

  74. Charlot, B., et al.: Micropatterning PEDOT:PSS layers. Microsyst. Technol. 19(6), 895–903 (2012)

    Article  Google Scholar 

  75. Hansen, T.S., et al.: Highly stretchable and conductive polymer material made from poly(3,4-ethylenedioxythiophene) and polyurethane elastomers. Adv. Funct. Mater. 17(16), 3069–3073 (2007)

    Article  CAS  Google Scholar 

  76. Hansen, T.S., et al.: Direct fast patterning of conductive polymers using agarose stamping. Adv. Mater. 19(20), 3261–3265 (2007)

    Article  CAS  Google Scholar 

  77. Kiilerich-Pedersen, K., et al.: Polymer based biosensor for rapid electrochemical detection of virus infection of human cells. Biosens. Bioelectron. 28(1), 386–392 (2011)

    Article  CAS  Google Scholar 

  78. Daprà, J., et al.: Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor. Biosens. Bioelectron. 43, 315–320 (2013)

    Article  Google Scholar 

  79. Kiilerich-Pedersen, K., et al.: High sensitivity point-of-care device for direct virus diagnostics. Biosens. Bioelectron. 49, 374–379 (2013)

    Article  CAS  Google Scholar 

  80. Rosati, G., et al.: Performance improvement by layout designs of conductive polymer microelectrode based impedimetric biosensors. Electroanalysis 26(6), 1400–1408 (2014)

    Article  CAS  Google Scholar 

  81. Moczko, E., et al.: Biosensor employing screen-printed PEDOT:PSS for sensitive detection of phenolic compounds in water. J. Polym. Sci., Part A: Polym. Chem. 50(11), 2286–2292 (2012)

    Article  CAS  Google Scholar 

  82. Andreescu, S., Barthelmebs, L., Marty, J.-L.: Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal. Chim. Acta 464(2), 171–180 (2002)

    Article  CAS  Google Scholar 

  83. Park, J., Kim, H.K., Son, Y.: Glucose biosensor constructed from capped conducting microtubules of PEDOT. Sens. Actuators B Chem. 133(1), 244–250 (2008)

    Article  CAS  Google Scholar 

  84. Arter, J.A., et al.: Virus-PEDOT nanowires for biosensing. Nano Lett. 10(12), 4858–4862 (2010)

    Article  CAS  Google Scholar 

  85. Wulff, G., Sarhan, A.: Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angew. Chem. 84(8), 364–364 (1972)

    Article  Google Scholar 

  86. Arshady, R., Mosbach, K.: Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromol. Chem. 182(2), 687–692 (1981)

    Article  CAS  Google Scholar 

  87. Dickert, F.: Molecular imprinting. Anal. Bioanal. Chem. 389(2), 353–354 (2007)

    Article  CAS  Google Scholar 

  88. Peng, Y., Britt D, Walsh M, Doyle T.: Macromolecule-Imprinted polymers. In: Irudayaraj, J. (ed.) Series on Biomedical Nanosensors, pp. 21–58. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  89. Brüggemann, O.: Molecularly imprinted polymers: a new dimension in analytical bioseparation. In: Freitag, R. (ed.) Synthetic Polymers for Biotechnology and Medicine, pp. 134–161. Eurekah/Landes Bioscience, Georgetown (2003)

    Google Scholar 

  90. Puoci, F., et al.: Molecularly Imprinted Polymers (MIPs) in biomedical applications. Biopolymers 28, 548–574 (2010)

    Google Scholar 

  91. Puoci, F., et al.: Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opin. Drug Deliv. 8(10), 1379–1393 (2011)

    Article  CAS  Google Scholar 

  92. Yano, K.: Molecularly imprinted polymers for biosensor applications. TrAC Trends Anal. Chem. 18(3), 199–204 (1999)

    Article  CAS  Google Scholar 

  93. Spivak, D.A.: MIPS in biotechnology, perspective and reality. In: Piletsky, S.A., Turner, A. (eds.) Molecular Imprinting of Polymers, pp. 1–9. Eurekah/Landes Bioscience, Georgetown (2006)

    Google Scholar 

  94. Malitesta, C., et al.: MIP sensors–the electrochemical approach. Anal. Bioanal. Chem. 402(5), 1827–1846 (2012)

    Article  CAS  Google Scholar 

  95. Zeng, H., Wang, D., Yu, J.: A molecule-imprinted polyaniline membrane modified on carbon fiber for detection of glycine. Bio-Med. Mater. Eng. 24(1), 1085–1091 (2014)

    CAS  Google Scholar 

  96. Wen, T., et al.: Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine. Biosens. Bioelectron. 56C, 180–185 (2014)

    Article  Google Scholar 

  97. Xue, C., et al.: Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens. Bioelectron. 49, 199–203 (2013)

    Article  CAS  Google Scholar 

  98. Khadro, B., et al.: Molecularly imprinted polymers (MIP) based electrochemical sensor for detection of urea and creatinine. Procedia Eng. 5, 371–374 (2010)

    Article  CAS  Google Scholar 

  99. Peeters M, Troost FJ, van Grinsven B, et al: MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sens. Actuators B Chem. 171–172, 602–610 (2012). doi:10.1016/j.snb.2012.05.040

    Google Scholar 

  100. Duan, Y., et al.: Determination of epigallocatechin-3-gallate with a high-efficiency electrochemical sensor based on a molecularly imprinted poly(o -phenylenediamine) film. J. Appl. Polym. Sci. 129(5), 2882–2890 (2013)

    Article  CAS  Google Scholar 

  101. Yarman, A., Scheller, F.W.: The first electrochemical MIP sensor for tamoxifen. Sensors 14(5), 7647–7654 (2014)

    Article  CAS  Google Scholar 

  102. Wang, Y., et al.: A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate. Electrochim. Acta 107, 147–154 (2013)

    Article  CAS  Google Scholar 

  103. Cennamo, N., et al.: High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B: Chem. 191, 529–536 (2014)

    Article  CAS  Google Scholar 

  104. Verma, R., Gupta, B.D.: Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 138(23), 7254–7263 (2013)

    Article  CAS  Google Scholar 

  105. Verma, R., Gupta, B.D.: Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly imprinted hydrogel. Sens. Actuators B Chem. 177, 279–285 (2013)

    Article  CAS  Google Scholar 

  106. Lotierzo, M., et al.: Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens. Bioelectron. 20(2), 145–152 (2004)

    Article  CAS  Google Scholar 

  107. Zhou, J., et al.: A single antibody sandwich electrochemiluminescence immunosensor based on protein magnetic molecularly imprinted polymers mimicking capture probes. Sens. Actuators B Chem 186, 300–307 (2013)

    Article  CAS  Google Scholar 

  108. Rahiminezhad, M., et al.: Application of response surface methodology to synthesize appropriate molecularly imprinted polymer for diazinon. Key Eng. Mater. 605(605), 67–70 (2014)

    Article  Google Scholar 

  109. Dechtrirat, D., et al.: Hybrid material for protein sensing based on electrosynthesized mip on a mannose terminated self-assembled monolayer. Adv. Funct. Mater. 24(15), 2233–2239 (2014)

    Article  CAS  Google Scholar 

  110. Affatato, L.: Smart textiles: a strategic perspective of textile industry. Adv. Sci. Technol. 80, 1–6 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Rozlosnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cherré, S., Rozlosnik, N. (2015). Polymer Based Biosensors for Medical Applications. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_17

Download citation

Publish with us

Policies and ethics