Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 1218 Accesses

Abstract

The problem of percolation, studied in the previous chapter, might be called complex. The system was not thermal; and the concept of thermodynamic temperature was absent. The structure of the model allowed the possibility of nonthermal fluctuations which, in turn, lead to the presence of a continuous phase transition and a critical point in the system. We saw many similarities with the thermal systems of statistical physics; however, the completely developed analogy was absent. So, we introduced a set of parameters, such as the order parameter, the field parameter, and the averaged cluster size \(\tilde{S}\); but so far we have not found the counterparts of these quantities in statistical physics. In more detail, we return to this question in Chap. 6, where these analogies will be found. However, at first we need to consider one more complex, nonthermal system whose mapping on the phenomena of statistical physics will be more transparent.

The model considered represents damage phenomena. The thermodynamic temperature is absent in the system; however, the stochastic distribution, as an “input” of the model, generates fluctuations, perfectly described by the laws of statistical physics.

In fact, the analogy with statistical physics will be so complete and the model will be so illustrative that the discussion of the concepts of statistical physics itself in Chap. 2 could be illustrated with the aid of this system instead of the thermodynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov, S.G.: Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena. J. Stat. Mech. 9, P09005 (2008). doi:10.1088/1742–5468/2008/09/P09005

    Google Scholar 

  • Abaimov, S.G.: Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior. J. Stat. Mech. 3, P03039 (2009)

    Google Scholar 

  • Abaimov, S.G.: Statistical physics of complex systems (in Russian), 2nd ed. Synergetics: From Past to Future, vol. 57, URSS, Moscow (2013)

    Google Scholar 

  • Abaimov, S.G., Cusumano, J.P.: Nucleation phenomena in an annealed damage model: Statistics of times to failure. Phys. Rev. E 90(6), 062401 (2014)

    Google Scholar 

  • Andersen, J.V., Sornette, D., Leung, K.-T.: Tricritical behavior in rupture induced by disorder. Phys. Rev. Lett. 78(11), 2140–2143 (1997)

    ADS  Google Scholar 

  • Arndt, P.F., Nattermann, T.: Criterion for crack formation in disordered materials. Phys. Rev. B. 63(13), 134–204 (2001)

    Google Scholar 

  • Batrouni, G.G., Hansen, A., Schmittbuhl, J.: Heterogeneous interfacial failure between two elastic blocks. Phys. Rev. E 65(3), 036126 (2002)

    ADS  Google Scholar 

  • Bhattacharyya, P., Chakrabarti, B.K. (eds.): Modelling Critical and Catastrophic Phenomena in Geoscience. Springer, Berlin (2006)

    Google Scholar 

  • Bhattacharyya, P., Pradhan, S., Chakrabarti, B.K.: Phase transition in fiber bundle models with recursive dynamics. Phys. Rev. E 67(4), 046122 (2003)

    ADS  MathSciNet  Google Scholar 

  • Birnbaum, Z.W., Saunders, S.C.: A statistical model for life-length of materials. J. Am. Stat. Assoc. 53(281), 151–159 (1958)

    MATH  MathSciNet  Google Scholar 

  • Blumberg Selinger, R.L., Wang, Z.-G., Gelbart, W.M., Ben-Shaul, A.: Statistical-thermodynamic approach to fracture. Phys. Rev. A 43(8), 4396–4400 (1991)

    ADS  Google Scholar 

  • Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K., Meunier, J.: Delayed fracture of an inhomogeneous soft solid. Science 280(5361), 265–267 (1998)

    ADS  Google Scholar 

  • Buchel, A., Sethna, J.P.: Elastic theory has zero radius of convergence. Phys. Rev. Lett. 77(8), 1520–1523 (1996)

    ADS  Google Scholar 

  • Buchel, A., Sethna, J.P.: Statistical mechanics of cracks: fluctuations, breakdown, and asymptotics of elastic theory. Phys. Rev. E 55(6), 7669–7690 (1997)

    ADS  MathSciNet  Google Scholar 

  • Chakrabarti, B.K., Benguigui, L.G.: Statistical Physics of Fracture and Breakdown in Disordered Systems. Monographs on the Physics and Chemistry of Materials. Clarendon Press, Oxford (1997)

    Google Scholar 

  • Ciliberto, S., Guarino, A., Scorretti, R.: The effect of disorder on the fracture nucleation process. Physica. D 158(1–4), 83–104 (2001)

    ADS  MATH  Google Scholar 

  • Coleman, B.D.: Time dependence of mechanical breakdown phenomena. J. Appl. Phys. 27(8), 862–866 (1956)

    ADS  Google Scholar 

  • Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. I. Constant total load. J. Appl. Phys. 28(9), 1058–1064 (1957a)

    ADS  Google Scholar 

  • Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. II. The infinite ideal bundle under linearly increasing loads. J. Appl. Phys. 28(9), 1065–1067 (1957b)

    ADS  Google Scholar 

  • Coleman, B.D.: On the strength of classical fibres and fibre bundles. J. Mech. Phys. Solids 7(1), 60–70 (1958a)

    ADS  MATH  MathSciNet  Google Scholar 

  • Coleman, B.D.: Statistics and time dependence of mechanical breakdown in fibers. J. Appl. Phys. 29(6), 968–983 (1958b)

    ADS  MATH  Google Scholar 

  • Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. III. The power law breakdown rule. Trans. Soc. Rheology 2(1), 195–218 (1958c)

    ADS  Google Scholar 

  • Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. IV. Infinite ideal bundle under oscillating loads. J. Appl. Phys. 29(7), 1091–1099 (1958d)

    Google Scholar 

  • Curtin, W.A., Takeda, N.: Tensile strength of fiber-reinforced composites: I. Model and effects of local fiber geometry. J. Comp. Mat. 32(22), 2042–2059 (1998)

    Google Scholar 

  • da Silveira, R.: Comment on ‘Tricritical behavior in rupture induced by disorder’. Phys. Rev. Lett. 80(14), 3157 (1998)

    ADS  Google Scholar 

  • da Silveira, R.: An introduction to breakdown phenomena in disordered systems. Am. J. Phys. 67(12), 1177–1188 (1999)

    ADS  Google Scholar 

  • Daniels, H.E.: The statistical theory of the strength of bundles of threads. I. Proc. Roy. Soc. A 183(995), 405–435 (1945)

    ADS  MATH  MathSciNet  Google Scholar 

  • Daniels, H.E.: The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of bundles of fibres. Adv. Appl. Probab. 21(2), 315–333 (1989)

    MATH  MathSciNet  Google Scholar 

  • Daniels, H.E., Skyrme, T.H.R.: The maximum of a random walk whose mean path has a maximum. Adv. Appl. Probab. 17(1), 85–99 (1985)

    MATH  MathSciNet  Google Scholar 

  • Delaplace, A., Roux, S., Pijaudier-Cabot, G.: Damage cascade in a softening interface. Int. J. Solids Struct. 36(10), 1403–1426 (1999)

    MATH  MathSciNet  Google Scholar 

  • Duxbury, P.M., Leath, P.L.: Exactly solvable models of material breakdown. Phys. Rev. B 49(18), 12676–12687 (1994)

    ADS  Google Scholar 

  • Gómez, J.B., Iñiguez, D., Pacheco, A.F.: Solvable fracture model with local load transfer. Phys. Rev. Lett. 71(3), 380–383 (1993)

    ADS  Google Scholar 

  • Gómez, J.B., Moreno, Y., Pacheco, A.F.: Probabilistic approach to time-dependent load-transfer models of fracture. Phys. Rev. E 58(2), 1528–1532 (1998)

    ADS  Google Scholar 

  • Guarino, A., Ciliberto, S., Garcimartín, A.: Failure time and microcrack nucleation. Europhys. Lett. 47(4), 456–461 (1999a)

    ADS  Google Scholar 

  • Guarino, A., Scorretti, R., Ciliberto, S.: Material failure time and the fiber bundle model with thermal noise. arXiv cond-mat/9908329v1, 1–11 (1999b)

    Google Scholar 

  • Guarino, A., Ciliberto, S., Garcimartín, A., Zei, M., Scorretti, R.: Failure time and critical behaviour of fracture precursors in heterogeneous materials. Eur. Phys. J. B 26(2), 141–151 (2002)

    ADS  Google Scholar 

  • Hansen, A., Hemmer, P.C.: Burst avalanches in bundles of fibers: Local versus global load-sharing. Phys. Lett. A 184(6), 394–396 (1994a)

    ADS  Google Scholar 

  • Hansen, A., Hemmer, P.C.: Criticality in fracture: the burst distribution. Trends Stat. Phys. 1, 213–224 (1994b)

    ADS  Google Scholar 

  • Harlow, D.G.: The pure flaw model for chopped fibre composites. Proc. Roy. Soc. A 397, 211–232 (1985)

    ADS  Google Scholar 

  • Harlow, D.G., Phoenix, S.L.: The chain-of-bundles probability model for the strength of fibrous materials I: analysis and conjectures. J. Comp. Mat. 12(2), 195–214 (1978)

    Google Scholar 

  • Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of composite materials I: two-level bounds. Int. J. Fract. 17(4), 347–372 (1981a)

    Google Scholar 

  • Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of composite materials II: a convergent sequence of tight bounds. Int. J. Fract. 17(6), 601–630 (1981b)

    Google Scholar 

  • Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of fibrous materials under local load sharing. I. Two-level failure and edge effects. Adv. Appl. Probab. 14(1), 68–94 (1982)

    MATH  MathSciNet  Google Scholar 

  • Harlow, D.G., Phoenix, S.L.: Approximations for the strength distribution and size effect in an idealized lattice model of material breakdown. J. Mech. Phys. Solids 39(2), 173–200 (1991)

    ADS  MATH  Google Scholar 

  • Hemmer, P.C., Hansen, A.: The distribution of simultaneous fiber failures in fiber bundles. J. Appl. Mech. 59(4), 909–914 (1992)

    ADS  MATH  Google Scholar 

  • Herrmann, H.J., Roux, S. (eds.): Statistical Models for the Fracture of Disordered Media. North-Holland, Amsterdam (1990)

    Google Scholar 

  • Hidalgo, R.C., Kun, F., Herrmann, H.J.: Bursts in a fiber bundle model with continuous damage. Phys. Rev. E 64(6), 066122 (2001)

    ADS  Google Scholar 

  • Hidalgo, R.C., Moreno, Y., Kun, F., Herrmann, H.J.: Fracture model with variable range of interaction. Phys. Rev. E 65(4), 046148 (2002)

    ADS  Google Scholar 

  • Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Kluwer Academic Publishers, Dordrecht (1986)

    MATH  Google Scholar 

  • Kagan, Y., Knopoff, L.: Statistical study of the occurrence of shallow earthquakes. Geophys. J. Int. 55(1), 67–86 (1978)

    ADS  Google Scholar 

  • Kloster, M., Hansen, A., Hemmer, P.C.: Burst avalanches in solvable models of fibrous materials. Phys. Rev. E 56(3), 2615–2625 (1997)

    ADS  Google Scholar 

  • Krajcinovic, D.: Damage Mechanics. North-Holland Series in Applied Mathematics and Mechanics, vol. 41. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Krajcinovic, D., Silva, M.A.G.: Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 18(7), 551–562 (1982)

    MATH  Google Scholar 

  • Krajcinovic, D., van Mier, J. (eds.): Damage and Fracture of Disordered Materials. Springer, Wien (2000)

    Google Scholar 

  • Krajcinovic, D., Lubarda, V., Sumarac, D.: Fundamental aspects of brittle cooperative phenomena—effective continua models. Mech. Mater. 15(2), 99–115 (1993)

    Google Scholar 

  • Kun, F., Zapperi, S., Herrmann, H.J.: Damage in fiber bundle models. Eur. Phys. J. B 17(2), 269–279 (2000)

    ADS  Google Scholar 

  • Leath, P.L., Duxbury, P.M.: Fracture of heterogeneous materials with continuous distributions of local breaking strengths. Phys. Rev. B 49(21), 14905 (1994)

    ADS  Google Scholar 

  • Lee, W.: Burst process of stretched fiber bundles. Phys. Rev. E 50(5), 3797 (1994)

    ADS  Google Scholar 

  • Lemaitre, J.: A Course on Damage Mechanics, 2nd ed. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics. Springer, Berlin (2005)

    Google Scholar 

  • Moral, L., Gómez, J.B., Moreno, Y., Pacheco, A.F.: Exact numerical solution for a time-dependent fibre-bundle model with continuous damage. J. Phys. A 34(47), 9983–9991 (2001a)

    ADS  MATH  Google Scholar 

  • Moral, L., Moreno, Y., Gómez, J.B., Pacheco, A.F.: Time dependence of breakdown in a global fiber-bundle model with continuous damage. Phys. Rev. E 63(6), 066106 (2001b)

    ADS  Google Scholar 

  • Moreno, Y., Gómez, J.B., Pacheco, A.F.: Self-organized criticality in a fibre-bundle-type model. Physica A 274(3–4), 400–409 (1999)

    ADS  Google Scholar 

  • Moreno, Y., Gómez, J.B., Pacheco, A.F.: Fracture and second-order phase transitions. Phys. Rev. Lett. 85(14), 2865–2868 (2000)

    ADS  Google Scholar 

  • Moreno, Y., Correig, A.M., Gómez, J.B., Pacheco, A.F.: A model for complex aftershock sequences. J. Geophys. Res. 106(B4), 6609–6619 (2001a)

    ADS  Google Scholar 

  • Moreno, Y., Gómez, J.B., Pacheco, A.F.: Phase transitions in load transfer models of fracture. Physica A 296(1–2), 9–23 (2001b)

    ADS  MATH  Google Scholar 

  • Nanjo, K.Z., Turcotte, D.L.: Damage and rheology in a fibre-bundle model. Geophys. J. Int. 162(3), 859–866 (2005)

    Google Scholar 

  • Narasimhan, M.N.L.: Principles of Continuum Mechanics. Wiley, New York (1993)

    MATH  Google Scholar 

  • Newman, W.I., Phoenix, S.L.: Time-dependent fiber bundles with local load sharing. Phys. Rev. E 63(2), 021507 (2001)

    ADS  Google Scholar 

  • Omori, F.: On after-shocks of earthquakes. J. Coll. Sci. Imp. U. Tokyo 7, 111–200 (1894)

    Google Scholar 

  • Pauchard, L., Meunier, J.: Instantaneous and time-lag breaking of a two-dimensional solid rod under a bending stress. Phys. Rev. Lett. 70(23), 3565–3568 (1993)

    ADS  Google Scholar 

  • Phoenix, S.L.: The asymptotic time to failure of a mechanical system of parallel members. SIAM J. Appl. Math. 34(2), 227–246 (1978a)

    MATH  MathSciNet  Google Scholar 

  • Phoenix, S.L.: Stochastic strength and fatigue of fiber bundles. Int. J. Fract. 14(3), 327–344 (1978b)

    Google Scholar 

  • Phoenix, S.L.: The asymptotic distribution for the time to failure of a fiber bundle. Adv. Appl. Probab. 11(1), 153–187 (1979a)

    MATH  MathSciNet  Google Scholar 

  • Phoenix, S.L.: Statistical aspects of failure of fibrous materials. In: Tsai, S.W. (ed.) Composite Materials: Testing and Design, vol. STP674, pp. 455–483. ASTM, Philadelphia (1979b)

    Google Scholar 

  • Phoenix, S.L., Newman, W.I.: Time-dependent fiber bundles with local load sharing. II. General Weibull fibers. Phys. Rev. E 80(6), 066115 (2009)

    ADS  Google Scholar 

  • Phoenix, S.L., Raj, R.: Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metall. Mater. 40(11), 2813–2828 (1992)

    Google Scholar 

  • Phoenix, S.L., Smith, R.L.: A comparison of probabilistic techniques for the strength of fibrous materials under local load-sharing among fibers. Int. J. Solids Struct. 19(6), 479–496 (1983)

    MATH  Google Scholar 

  • Phoenix, S.L., Taylor, H.M.: The asymptotic strength distribution of a general fiber bundle. Adv. Appl. Probab. 5, 200–216 (1973)

    MATH  MathSciNet  Google Scholar 

  • Phoenix, S.L., Tierney, L.-J.: A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Eng. Fract. Mech. 18(1), 193–215 (1983)

    Google Scholar 

  • Pierce, F.T.: Tensile tests for cotton yarns: V. The “weakest link” theorems on the strength of long and of composite specimens. J. Textile Inst. Trans. 17(7), T355–T368 (1926)

    Google Scholar 

  • Politi, A., Ciliberto, S., Scorretti, R.: Failure time in the fiber-bundle model with thermal noise and disorder. Phys. Rev. E 66(2), 026107 (2002)

    ADS  Google Scholar 

  • Pradhan, S., Bhattacharyya, P., Chakrabarti, B.K.: Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model. Phys. Rev. E 66(1), 016116 (2002)

    ADS  Google Scholar 

  • Pradhan, S., Hansen, A., Chakrabarti, B.K.: Failure processes in elastic fiber bundles. arXiv 0808.1375 (2008)

    Google Scholar 

  • Pradhan, S., Hansen, A., Chakrabarti, B.K.: Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82(1), 499 (2010)

    ADS  Google Scholar 

  • Pride, S.R., Toussaint, R.: Thermodynamics of fiber bundles. Physica A 312(1–2), 159–171 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  • Roux, S.: Thermally activated breakdown in the fiber-bundle model. Phys. Rev. E 62(5), 6164–6169 (2000)

    ADS  Google Scholar 

  • Roux, S., Delaplace, A., Pijaudier-Cabot, G.: Damage at heterogeneous interfaces. Physica A 270(1–2), 35–41 (1999)

    ADS  Google Scholar 

  • Rundle, J.B., Klein, W.: Nonclassical nucleation and growth of cohesive tensile cracks. Phys. Rev. Lett. 63(2), 171–174 (1989)

    ADS  Google Scholar 

  • Saanouni, K. (ed.): Numerical Modeling in Damage Mechanics. Hermes Science Publications, Paris (2001)

    Google Scholar 

  • Saichev, A., Sornette, D.: Andrade, Omori, and time-to-failure laws from thermal noise in material rupture. Phys. Rev. E 71(1), 016608 (2005)

    ADS  Google Scholar 

  • Scorretti, R., Ciliberto, S., Guarino, A.: Disorder enhances the effects of thermal noise in the fiber bundle model. Europhys. Lett. 55(5), 626–632 (2001)

    ADS  Google Scholar 

  • Sen, P.K.: An asymptotically efficient test for the bundle strength of filaments. J. Appl. Probab. 10(3), 586–596 (1973a)

    MATH  Google Scholar 

  • Sen, P.K.: On fixed size confidence bands for the bundle strength of filaments. Ann. Stat. 1(3), 526–537 (1973b)

    MATH  Google Scholar 

  • Smith, R.L.: A probability model for fibrous composites with local load sharing. Proc. Roy. Soc. A 372(1751), 539–553 (1980)

    ADS  MATH  Google Scholar 

  • Smith, R.L.: The asymptotic distribution of the strength of a series-parallel system with equal load-sharing. Ann. Prob. 10(1), 137–171 (1982)

    MATH  Google Scholar 

  • Smith, R.L., Phoenix, S.L.: Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing. J. Appl. Mech. 48(1), 75–82 (1981)

    ADS  MATH  MathSciNet  Google Scholar 

  • Sollich, P.: Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58(1), 738–759 (1998)

    ADS  Google Scholar 

  • Sornette, A., Sornette, D.: Earthquake rupture as a critical-point: Consequences for telluric precursors. Tectonophysics. 179(3–4), 327–334 (1990)

    ADS  Google Scholar 

  • Sornette, D.: Elasticity and failure of a set of elements loaded in parallel. J. Phys. A 22(6), L243–L250 (1989)

    ADS  Google Scholar 

  • Sornette, D.: Mean-field solution of a block-spring model of earthquakes. J. Phys. I 2(11), 2089–2096 (1992)

    Google Scholar 

  • Sornette, D.: Sweeping of an instability: an alternative to self-organized criticality to get powerlaws without parameter tuning. J. Phys. I 4(2), 209–221 (1994)

    MathSciNet  Google Scholar 

  • Sornette, D.: Critical Phenomena in Natural Sciences, 2nd ed. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Sornette, D., Andersen, J.V.: Scaling with respect to disorder in time-to-failure. Eur. Phys. J. B 1(3), 353–357 (1998)

    ADS  Google Scholar 

  • Sornette, D., Andersen, J.V.: Optimal prediction of time-to-failure from information revealed by damage. Europhys. Lett. 74(5), 778–784 (2006)

    ADS  MathSciNet  Google Scholar 

  • Sornette, D., Ouillon, G.: Multifractal scaling of thermally activated rupture processes. Phys. Rev. Lett. 94(3), 038501 (2005)

    ADS  Google Scholar 

  • Sornette, D., Redner, S.: Rupture in the bubble model. J. Phys. A 22(13), L619–L625 (1989)

    ADS  Google Scholar 

  • Sornette, D., Sammis, C.G.: Complex critical exponents from renormalization-group theory of earthquakes: implications for earthquake predictions. J. Phys. I 5(5), 607–619 (1995)

    Google Scholar 

  • Sornette, D., Vanneste, C.: Dynamics and memory effects in rupture of thermal fuse networks. Phys. Rev. Lett. 68(5), 612–615 (1992)

    ADS  Google Scholar 

  • Sornette, D., Vanneste, C., Knopoff, L.: Statistical model of earthquake foreshocks. Phys. Rev. A 45(12), 8351–8357 (1992)

    ADS  Google Scholar 

  • Suh, M.W., Bhattacharyya, B.B., Grandage, A.: On the distribution and moments of the strength of a bundle of filaments. J. Appl. Probab. 7(3), 712–720 (1970)

    MATH  MathSciNet  Google Scholar 

  • Turcotte, D.L., Glasscoe, M.T.: A damage model for the continuum rheology of the upper continental crust. Tectonophysics. 383(1–2), 71–80 (2004)

    ADS  Google Scholar 

  • Turcotte, D.L., Newman, W.I., Shcherbakov, R.: Micro and macroscopic models of rock fracture. Geophys. J. Int. 152(3), 718–728 (2003)

    ADS  Google Scholar 

  • Utsu, T., Ogata, Y., Matsu’ura, R.S.: The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43(1), 1–33 (1995)

    Google Scholar 

  • Vanneste, C., Sornette, D.: The dynamical thermal fuse model. J. Phys. I 2(8), 1621–1644 (1992)

    Google Scholar 

  • Vázquez-Prada, M., Gómez, J.B., Moreno, Y., Pacheco, A.F.: Time to failure of hierarchical load-transfer models of fracture. Phys. Rev. E 60(3), 2581–2594 (1999)

    ADS  Google Scholar 

  • Wu, B.Q., Leath, P.L.: Failure probabilities and tough-brittle crossover of heterogeneous materials with continuous disorder. Phys. Rev. B 59(6), 4002 (1999)

    ADS  Google Scholar 

  • Yewande, O.E., Moreno, Y., Kun, F., Hidalgo, R.C., Herrmann, H.J.: Time evolution of damage under variable ranges of load transfer. Phys. Rev. E 68(2), 026116 (2003)

    ADS  Google Scholar 

  • Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: First-order transition in the breakdown of disordered media. Phys. Rev. Lett. 78(8), 1408–1411 (1997)

    ADS  Google Scholar 

  • Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: Analysis of damage clusters in fracture processes. Physica A 270(1–2), 57–62 (1999a)

    ADS  Google Scholar 

  • Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: Avalanches in breakdown and fracture processes. Phys. Rev. E 59(5), 5049–5057 (1999b)

    ADS  Google Scholar 

  • Zhang, S.-D.: Scaling in the time-dependent failure of a fiber bundle with local load sharing. Phys. Rev. E 59(2), 1589–1592 (1999)

    ADS  Google Scholar 

  • Zhang, S.-D., Ding, E.-J.: Burst-size distribution in fiber-bundles with local load-sharing. Phys. Lett. A 193(5–6), 425–430 (1994)

    ADS  Google Scholar 

  • Zhang, S.-D., Ding, E.-J.: Failure of fiber bundles with local load sharing. Phys. Rev. B 53(2), 646–654 (1996)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Abaimov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abaimov, S. (2015). Damage Phenomena. In: Statistical Physics of Non-Thermal Phase Transitions. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-12469-8_5

Download citation

Publish with us

Policies and ethics