Advertisement

Damage Phenomena

  • Sergey G. AbaimovEmail author
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

The problem of percolation, studied in the previous chapter, might be called complex. The system was not thermal; and the concept of thermodynamic temperature was absent. The structure of the model allowed the possibility of nonthermal fluctuations which, in turn, lead to the presence of a continuous phase transition and a critical point in the system. We saw many similarities with the thermal systems of statistical physics; however, the completely developed analogy was absent. So, we introduced a set of parameters, such as the order parameter, the field parameter, and the averaged cluster size \(\tilde{S}\); but so far we have not found the counterparts of these quantities in statistical physics. In more detail, we return to this question in Chap. 6, where these analogies will be found. However, at first we need to consider one more complex, nonthermal system whose mapping on the phenomena of statistical physics will be more transparent.

The model considered represents damage phenomena. The thermodynamic temperature is absent in the system; however, the stochastic distribution, as an “input” of the model, generates fluctuations, perfectly described by the laws of statistical physics.

In fact, the analogy with statistical physics will be so complete and the model will be so illustrative that the discussion of the concepts of statistical physics itself in Chap. 2 could be illustrated with the aid of this system instead of the thermodynamic systems.

Keywords

Partition Function Thermal Fluctuation Fiber Strength Rigid Plate Fiber Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abaimov, S.G.: Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena. J. Stat. Mech. 9, P09005 (2008). doi:10.1088/1742–5468/2008/09/P09005Google Scholar
  2. Abaimov, S.G.: Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior. J. Stat. Mech. 3, P03039 (2009)Google Scholar
  3. Abaimov, S.G.: Statistical physics of complex systems (in Russian), 2nd ed. Synergetics: From Past to Future, vol. 57, URSS, Moscow (2013)Google Scholar
  4. Abaimov, S.G., Cusumano, J.P.: Nucleation phenomena in an annealed damage model: Statistics of times to failure. Phys. Rev. E 90(6), 062401 (2014)Google Scholar
  5. Andersen, J.V., Sornette, D., Leung, K.-T.: Tricritical behavior in rupture induced by disorder. Phys. Rev. Lett. 78(11), 2140–2143 (1997)ADSGoogle Scholar
  6. Arndt, P.F., Nattermann, T.: Criterion for crack formation in disordered materials. Phys. Rev. B. 63(13), 134–204 (2001)Google Scholar
  7. Batrouni, G.G., Hansen, A., Schmittbuhl, J.: Heterogeneous interfacial failure between two elastic blocks. Phys. Rev. E 65(3), 036126 (2002)ADSGoogle Scholar
  8. Bhattacharyya, P., Chakrabarti, B.K. (eds.): Modelling Critical and Catastrophic Phenomena in Geoscience. Springer, Berlin (2006)Google Scholar
  9. Bhattacharyya, P., Pradhan, S., Chakrabarti, B.K.: Phase transition in fiber bundle models with recursive dynamics. Phys. Rev. E 67(4), 046122 (2003)ADSMathSciNetGoogle Scholar
  10. Birnbaum, Z.W., Saunders, S.C.: A statistical model for life-length of materials. J. Am. Stat. Assoc. 53(281), 151–159 (1958)zbMATHMathSciNetGoogle Scholar
  11. Blumberg Selinger, R.L., Wang, Z.-G., Gelbart, W.M., Ben-Shaul, A.: Statistical-thermodynamic approach to fracture. Phys. Rev. A 43(8), 4396–4400 (1991)ADSGoogle Scholar
  12. Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K., Meunier, J.: Delayed fracture of an inhomogeneous soft solid. Science 280(5361), 265–267 (1998)ADSGoogle Scholar
  13. Buchel, A., Sethna, J.P.: Elastic theory has zero radius of convergence. Phys. Rev. Lett. 77(8), 1520–1523 (1996)ADSGoogle Scholar
  14. Buchel, A., Sethna, J.P.: Statistical mechanics of cracks: fluctuations, breakdown, and asymptotics of elastic theory. Phys. Rev. E 55(6), 7669–7690 (1997)ADSMathSciNetGoogle Scholar
  15. Chakrabarti, B.K., Benguigui, L.G.: Statistical Physics of Fracture and Breakdown in Disordered Systems. Monographs on the Physics and Chemistry of Materials. Clarendon Press, Oxford (1997)Google Scholar
  16. Ciliberto, S., Guarino, A., Scorretti, R.: The effect of disorder on the fracture nucleation process. Physica. D 158(1–4), 83–104 (2001)ADSzbMATHGoogle Scholar
  17. Coleman, B.D.: Time dependence of mechanical breakdown phenomena. J. Appl. Phys. 27(8), 862–866 (1956)ADSGoogle Scholar
  18. Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. I. Constant total load. J. Appl. Phys. 28(9), 1058–1064 (1957a)ADSGoogle Scholar
  19. Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. II. The infinite ideal bundle under linearly increasing loads. J. Appl. Phys. 28(9), 1065–1067 (1957b)ADSGoogle Scholar
  20. Coleman, B.D.: On the strength of classical fibres and fibre bundles. J. Mech. Phys. Solids 7(1), 60–70 (1958a)ADSzbMATHMathSciNetGoogle Scholar
  21. Coleman, B.D.: Statistics and time dependence of mechanical breakdown in fibers. J. Appl. Phys. 29(6), 968–983 (1958b)ADSzbMATHGoogle Scholar
  22. Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. III. The power law breakdown rule. Trans. Soc. Rheology 2(1), 195–218 (1958c)ADSGoogle Scholar
  23. Coleman, B.D.: Time dependence of mechanical breakdown in bundles of fibers. IV. Infinite ideal bundle under oscillating loads. J. Appl. Phys. 29(7), 1091–1099 (1958d)Google Scholar
  24. Curtin, W.A., Takeda, N.: Tensile strength of fiber-reinforced composites: I. Model and effects of local fiber geometry. J. Comp. Mat. 32(22), 2042–2059 (1998)Google Scholar
  25. da Silveira, R.: Comment on ‘Tricritical behavior in rupture induced by disorder’. Phys. Rev. Lett. 80(14), 3157 (1998)ADSGoogle Scholar
  26. da Silveira, R.: An introduction to breakdown phenomena in disordered systems. Am. J. Phys. 67(12), 1177–1188 (1999)ADSGoogle Scholar
  27. Daniels, H.E.: The statistical theory of the strength of bundles of threads. I. Proc. Roy. Soc. A 183(995), 405–435 (1945)ADSzbMATHMathSciNetGoogle Scholar
  28. Daniels, H.E.: The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of bundles of fibres. Adv. Appl. Probab. 21(2), 315–333 (1989)zbMATHMathSciNetGoogle Scholar
  29. Daniels, H.E., Skyrme, T.H.R.: The maximum of a random walk whose mean path has a maximum. Adv. Appl. Probab. 17(1), 85–99 (1985)zbMATHMathSciNetGoogle Scholar
  30. Delaplace, A., Roux, S., Pijaudier-Cabot, G.: Damage cascade in a softening interface. Int. J. Solids Struct. 36(10), 1403–1426 (1999)zbMATHMathSciNetGoogle Scholar
  31. Duxbury, P.M., Leath, P.L.: Exactly solvable models of material breakdown. Phys. Rev. B 49(18), 12676–12687 (1994)ADSGoogle Scholar
  32. Gómez, J.B., Iñiguez, D., Pacheco, A.F.: Solvable fracture model with local load transfer. Phys. Rev. Lett. 71(3), 380–383 (1993)ADSGoogle Scholar
  33. Gómez, J.B., Moreno, Y., Pacheco, A.F.: Probabilistic approach to time-dependent load-transfer models of fracture. Phys. Rev. E 58(2), 1528–1532 (1998)ADSGoogle Scholar
  34. Guarino, A., Ciliberto, S., Garcimartín, A.: Failure time and microcrack nucleation. Europhys. Lett. 47(4), 456–461 (1999a)ADSGoogle Scholar
  35. Guarino, A., Scorretti, R., Ciliberto, S.: Material failure time and the fiber bundle model with thermal noise. arXiv cond-mat/9908329v1, 1–11 (1999b)Google Scholar
  36. Guarino, A., Ciliberto, S., Garcimartín, A., Zei, M., Scorretti, R.: Failure time and critical behaviour of fracture precursors in heterogeneous materials. Eur. Phys. J. B 26(2), 141–151 (2002)ADSGoogle Scholar
  37. Hansen, A., Hemmer, P.C.: Burst avalanches in bundles of fibers: Local versus global load-sharing. Phys. Lett. A 184(6), 394–396 (1994a)ADSGoogle Scholar
  38. Hansen, A., Hemmer, P.C.: Criticality in fracture: the burst distribution. Trends Stat. Phys. 1, 213–224 (1994b)ADSGoogle Scholar
  39. Harlow, D.G.: The pure flaw model for chopped fibre composites. Proc. Roy. Soc. A 397, 211–232 (1985)ADSGoogle Scholar
  40. Harlow, D.G., Phoenix, S.L.: The chain-of-bundles probability model for the strength of fibrous materials I: analysis and conjectures. J. Comp. Mat. 12(2), 195–214 (1978)Google Scholar
  41. Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of composite materials I: two-level bounds. Int. J. Fract. 17(4), 347–372 (1981a)Google Scholar
  42. Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of composite materials II: a convergent sequence of tight bounds. Int. J. Fract. 17(6), 601–630 (1981b)Google Scholar
  43. Harlow, D.G., Phoenix, S.L.: Probability distributions for the strength of fibrous materials under local load sharing. I. Two-level failure and edge effects. Adv. Appl. Probab. 14(1), 68–94 (1982)zbMATHMathSciNetGoogle Scholar
  44. Harlow, D.G., Phoenix, S.L.: Approximations for the strength distribution and size effect in an idealized lattice model of material breakdown. J. Mech. Phys. Solids 39(2), 173–200 (1991)ADSzbMATHGoogle Scholar
  45. Hemmer, P.C., Hansen, A.: The distribution of simultaneous fiber failures in fiber bundles. J. Appl. Mech. 59(4), 909–914 (1992)ADSzbMATHGoogle Scholar
  46. Herrmann, H.J., Roux, S. (eds.): Statistical Models for the Fracture of Disordered Media. North-Holland, Amsterdam (1990)Google Scholar
  47. Hidalgo, R.C., Kun, F., Herrmann, H.J.: Bursts in a fiber bundle model with continuous damage. Phys. Rev. E 64(6), 066122 (2001)ADSGoogle Scholar
  48. Hidalgo, R.C., Moreno, Y., Kun, F., Herrmann, H.J.: Fracture model with variable range of interaction. Phys. Rev. E 65(4), 046148 (2002)ADSGoogle Scholar
  49. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Kluwer Academic Publishers, Dordrecht (1986)zbMATHGoogle Scholar
  50. Kagan, Y., Knopoff, L.: Statistical study of the occurrence of shallow earthquakes. Geophys. J. Int. 55(1), 67–86 (1978)ADSGoogle Scholar
  51. Kloster, M., Hansen, A., Hemmer, P.C.: Burst avalanches in solvable models of fibrous materials. Phys. Rev. E 56(3), 2615–2625 (1997)ADSGoogle Scholar
  52. Krajcinovic, D.: Damage Mechanics. North-Holland Series in Applied Mathematics and Mechanics, vol. 41. Elsevier, Amsterdam (1996)Google Scholar
  53. Krajcinovic, D., Silva, M.A.G.: Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 18(7), 551–562 (1982)zbMATHGoogle Scholar
  54. Krajcinovic, D., van Mier, J. (eds.): Damage and Fracture of Disordered Materials. Springer, Wien (2000)Google Scholar
  55. Krajcinovic, D., Lubarda, V., Sumarac, D.: Fundamental aspects of brittle cooperative phenomena—effective continua models. Mech. Mater. 15(2), 99–115 (1993)Google Scholar
  56. Kun, F., Zapperi, S., Herrmann, H.J.: Damage in fiber bundle models. Eur. Phys. J. B 17(2), 269–279 (2000)ADSGoogle Scholar
  57. Leath, P.L., Duxbury, P.M.: Fracture of heterogeneous materials with continuous distributions of local breaking strengths. Phys. Rev. B 49(21), 14905 (1994)ADSGoogle Scholar
  58. Lee, W.: Burst process of stretched fiber bundles. Phys. Rev. E 50(5), 3797 (1994)ADSGoogle Scholar
  59. Lemaitre, J.: A Course on Damage Mechanics, 2nd ed. Springer, Berlin (1996)zbMATHGoogle Scholar
  60. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics. Springer, Berlin (2005)Google Scholar
  61. Moral, L., Gómez, J.B., Moreno, Y., Pacheco, A.F.: Exact numerical solution for a time-dependent fibre-bundle model with continuous damage. J. Phys. A 34(47), 9983–9991 (2001a)ADSzbMATHGoogle Scholar
  62. Moral, L., Moreno, Y., Gómez, J.B., Pacheco, A.F.: Time dependence of breakdown in a global fiber-bundle model with continuous damage. Phys. Rev. E 63(6), 066106 (2001b)ADSGoogle Scholar
  63. Moreno, Y., Gómez, J.B., Pacheco, A.F.: Self-organized criticality in a fibre-bundle-type model. Physica A 274(3–4), 400–409 (1999)ADSGoogle Scholar
  64. Moreno, Y., Gómez, J.B., Pacheco, A.F.: Fracture and second-order phase transitions. Phys. Rev. Lett. 85(14), 2865–2868 (2000)ADSGoogle Scholar
  65. Moreno, Y., Correig, A.M., Gómez, J.B., Pacheco, A.F.: A model for complex aftershock sequences. J. Geophys. Res. 106(B4), 6609–6619 (2001a)ADSGoogle Scholar
  66. Moreno, Y., Gómez, J.B., Pacheco, A.F.: Phase transitions in load transfer models of fracture. Physica A 296(1–2), 9–23 (2001b)ADSzbMATHGoogle Scholar
  67. Nanjo, K.Z., Turcotte, D.L.: Damage and rheology in a fibre-bundle model. Geophys. J. Int. 162(3), 859–866 (2005)Google Scholar
  68. Narasimhan, M.N.L.: Principles of Continuum Mechanics. Wiley, New York (1993)zbMATHGoogle Scholar
  69. Newman, W.I., Phoenix, S.L.: Time-dependent fiber bundles with local load sharing. Phys. Rev. E 63(2), 021507 (2001)ADSGoogle Scholar
  70. Omori, F.: On after-shocks of earthquakes. J. Coll. Sci. Imp. U. Tokyo 7, 111–200 (1894)Google Scholar
  71. Pauchard, L., Meunier, J.: Instantaneous and time-lag breaking of a two-dimensional solid rod under a bending stress. Phys. Rev. Lett. 70(23), 3565–3568 (1993)ADSGoogle Scholar
  72. Phoenix, S.L.: The asymptotic time to failure of a mechanical system of parallel members. SIAM J. Appl. Math. 34(2), 227–246 (1978a)zbMATHMathSciNetGoogle Scholar
  73. Phoenix, S.L.: Stochastic strength and fatigue of fiber bundles. Int. J. Fract. 14(3), 327–344 (1978b)Google Scholar
  74. Phoenix, S.L.: The asymptotic distribution for the time to failure of a fiber bundle. Adv. Appl. Probab. 11(1), 153–187 (1979a)zbMATHMathSciNetGoogle Scholar
  75. Phoenix, S.L.: Statistical aspects of failure of fibrous materials. In: Tsai, S.W. (ed.) Composite Materials: Testing and Design, vol. STP674, pp. 455–483. ASTM, Philadelphia (1979b)Google Scholar
  76. Phoenix, S.L., Newman, W.I.: Time-dependent fiber bundles with local load sharing. II. General Weibull fibers. Phys. Rev. E 80(6), 066115 (2009)ADSGoogle Scholar
  77. Phoenix, S.L., Raj, R.: Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metall. Mater. 40(11), 2813–2828 (1992)Google Scholar
  78. Phoenix, S.L., Smith, R.L.: A comparison of probabilistic techniques for the strength of fibrous materials under local load-sharing among fibers. Int. J. Solids Struct. 19(6), 479–496 (1983)zbMATHGoogle Scholar
  79. Phoenix, S.L., Taylor, H.M.: The asymptotic strength distribution of a general fiber bundle. Adv. Appl. Probab. 5, 200–216 (1973)zbMATHMathSciNetGoogle Scholar
  80. Phoenix, S.L., Tierney, L.-J.: A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Eng. Fract. Mech. 18(1), 193–215 (1983)Google Scholar
  81. Pierce, F.T.: Tensile tests for cotton yarns: V. The “weakest link” theorems on the strength of long and of composite specimens. J. Textile Inst. Trans. 17(7), T355–T368 (1926)Google Scholar
  82. Politi, A., Ciliberto, S., Scorretti, R.: Failure time in the fiber-bundle model with thermal noise and disorder. Phys. Rev. E 66(2), 026107 (2002)ADSGoogle Scholar
  83. Pradhan, S., Bhattacharyya, P., Chakrabarti, B.K.: Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model. Phys. Rev. E 66(1), 016116 (2002)ADSGoogle Scholar
  84. Pradhan, S., Hansen, A., Chakrabarti, B.K.: Failure processes in elastic fiber bundles. arXiv 0808.1375 (2008)Google Scholar
  85. Pradhan, S., Hansen, A., Chakrabarti, B.K.: Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82(1), 499 (2010)ADSGoogle Scholar
  86. Pride, S.R., Toussaint, R.: Thermodynamics of fiber bundles. Physica A 312(1–2), 159–171 (2002)ADSzbMATHMathSciNetGoogle Scholar
  87. Roux, S.: Thermally activated breakdown in the fiber-bundle model. Phys. Rev. E 62(5), 6164–6169 (2000)ADSGoogle Scholar
  88. Roux, S., Delaplace, A., Pijaudier-Cabot, G.: Damage at heterogeneous interfaces. Physica A 270(1–2), 35–41 (1999)ADSGoogle Scholar
  89. Rundle, J.B., Klein, W.: Nonclassical nucleation and growth of cohesive tensile cracks. Phys. Rev. Lett. 63(2), 171–174 (1989)ADSGoogle Scholar
  90. Saanouni, K. (ed.): Numerical Modeling in Damage Mechanics. Hermes Science Publications, Paris (2001)Google Scholar
  91. Saichev, A., Sornette, D.: Andrade, Omori, and time-to-failure laws from thermal noise in material rupture. Phys. Rev. E 71(1), 016608 (2005)ADSGoogle Scholar
  92. Scorretti, R., Ciliberto, S., Guarino, A.: Disorder enhances the effects of thermal noise in the fiber bundle model. Europhys. Lett. 55(5), 626–632 (2001)ADSGoogle Scholar
  93. Sen, P.K.: An asymptotically efficient test for the bundle strength of filaments. J. Appl. Probab. 10(3), 586–596 (1973a)zbMATHGoogle Scholar
  94. Sen, P.K.: On fixed size confidence bands for the bundle strength of filaments. Ann. Stat. 1(3), 526–537 (1973b)zbMATHGoogle Scholar
  95. Smith, R.L.: A probability model for fibrous composites with local load sharing. Proc. Roy. Soc. A 372(1751), 539–553 (1980)ADSzbMATHGoogle Scholar
  96. Smith, R.L.: The asymptotic distribution of the strength of a series-parallel system with equal load-sharing. Ann. Prob. 10(1), 137–171 (1982)zbMATHGoogle Scholar
  97. Smith, R.L., Phoenix, S.L.: Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing. J. Appl. Mech. 48(1), 75–82 (1981)ADSzbMATHMathSciNetGoogle Scholar
  98. Sollich, P.: Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58(1), 738–759 (1998)ADSGoogle Scholar
  99. Sornette, A., Sornette, D.: Earthquake rupture as a critical-point: Consequences for telluric precursors. Tectonophysics. 179(3–4), 327–334 (1990)ADSGoogle Scholar
  100. Sornette, D.: Elasticity and failure of a set of elements loaded in parallel. J. Phys. A 22(6), L243–L250 (1989)ADSGoogle Scholar
  101. Sornette, D.: Mean-field solution of a block-spring model of earthquakes. J. Phys. I 2(11), 2089–2096 (1992)Google Scholar
  102. Sornette, D.: Sweeping of an instability: an alternative to self-organized criticality to get powerlaws without parameter tuning. J. Phys. I 4(2), 209–221 (1994)MathSciNetGoogle Scholar
  103. Sornette, D.: Critical Phenomena in Natural Sciences, 2nd ed. Springer, Berlin (2006)zbMATHGoogle Scholar
  104. Sornette, D., Andersen, J.V.: Scaling with respect to disorder in time-to-failure. Eur. Phys. J. B 1(3), 353–357 (1998)ADSGoogle Scholar
  105. Sornette, D., Andersen, J.V.: Optimal prediction of time-to-failure from information revealed by damage. Europhys. Lett. 74(5), 778–784 (2006)ADSMathSciNetGoogle Scholar
  106. Sornette, D., Ouillon, G.: Multifractal scaling of thermally activated rupture processes. Phys. Rev. Lett. 94(3), 038501 (2005)ADSGoogle Scholar
  107. Sornette, D., Redner, S.: Rupture in the bubble model. J. Phys. A 22(13), L619–L625 (1989)ADSGoogle Scholar
  108. Sornette, D., Sammis, C.G.: Complex critical exponents from renormalization-group theory of earthquakes: implications for earthquake predictions. J. Phys. I 5(5), 607–619 (1995)Google Scholar
  109. Sornette, D., Vanneste, C.: Dynamics and memory effects in rupture of thermal fuse networks. Phys. Rev. Lett. 68(5), 612–615 (1992)ADSGoogle Scholar
  110. Sornette, D., Vanneste, C., Knopoff, L.: Statistical model of earthquake foreshocks. Phys. Rev. A 45(12), 8351–8357 (1992)ADSGoogle Scholar
  111. Suh, M.W., Bhattacharyya, B.B., Grandage, A.: On the distribution and moments of the strength of a bundle of filaments. J. Appl. Probab. 7(3), 712–720 (1970)zbMATHMathSciNetGoogle Scholar
  112. Turcotte, D.L., Glasscoe, M.T.: A damage model for the continuum rheology of the upper continental crust. Tectonophysics. 383(1–2), 71–80 (2004)ADSGoogle Scholar
  113. Turcotte, D.L., Newman, W.I., Shcherbakov, R.: Micro and macroscopic models of rock fracture. Geophys. J. Int. 152(3), 718–728 (2003)ADSGoogle Scholar
  114. Utsu, T., Ogata, Y., Matsu’ura, R.S.: The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43(1), 1–33 (1995)Google Scholar
  115. Vanneste, C., Sornette, D.: The dynamical thermal fuse model. J. Phys. I 2(8), 1621–1644 (1992)Google Scholar
  116. Vázquez-Prada, M., Gómez, J.B., Moreno, Y., Pacheco, A.F.: Time to failure of hierarchical load-transfer models of fracture. Phys. Rev. E 60(3), 2581–2594 (1999)ADSGoogle Scholar
  117. Wu, B.Q., Leath, P.L.: Failure probabilities and tough-brittle crossover of heterogeneous materials with continuous disorder. Phys. Rev. B 59(6), 4002 (1999)ADSGoogle Scholar
  118. Yewande, O.E., Moreno, Y., Kun, F., Hidalgo, R.C., Herrmann, H.J.: Time evolution of damage under variable ranges of load transfer. Phys. Rev. E 68(2), 026116 (2003)ADSGoogle Scholar
  119. Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: First-order transition in the breakdown of disordered media. Phys. Rev. Lett. 78(8), 1408–1411 (1997)ADSGoogle Scholar
  120. Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: Analysis of damage clusters in fracture processes. Physica A 270(1–2), 57–62 (1999a)ADSGoogle Scholar
  121. Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: Avalanches in breakdown and fracture processes. Phys. Rev. E 59(5), 5049–5057 (1999b)ADSGoogle Scholar
  122. Zhang, S.-D.: Scaling in the time-dependent failure of a fiber bundle with local load sharing. Phys. Rev. E 59(2), 1589–1592 (1999)ADSGoogle Scholar
  123. Zhang, S.-D., Ding, E.-J.: Burst-size distribution in fiber-bundles with local load-sharing. Phys. Lett. A 193(5–6), 425–430 (1994)ADSGoogle Scholar
  124. Zhang, S.-D., Ding, E.-J.: Failure of fiber bundles with local load sharing. Phys. Rev. B 53(2), 646–654 (1996)ADSMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Structures, Processes and Engineered Materials CenterSkolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations