The Ising Model

  • Sergey G. AbaimovEmail author
Part of the Springer Series in Synergetics book series (SSSYN)


In the previous chapter, we have discussed the formalism of statistical physics. A big help for us was the Ising model which provided the very intuitive understanding for all the concepts considered.

However, the Ising model serves even better as an illustration of phase-transition phenomena. Therefore, in this chapter, we study the behavior of this model in detail.


Partition Function Metastable State Ising Model Triangular Lattice Spontaneous Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abaimov, S.G.: Statistical physics of complex systems (in Russian), 2nd ed. Synergetics: From Past to Future, vol. 57, URSS, Moscow (2013)Google Scholar
  2. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)zbMATHGoogle Scholar
  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)zbMATHGoogle Scholar
  4. Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86(6), 821–835 (1952)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. Bogoliubov, N.N.: On the theory of superfluidity. Bull. Russ. Acad. Sci. Phys. 11(1), 77–90 (1947a)MathSciNetGoogle Scholar
  6. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. U.S.S.R. 11(1), 23–32 (1947b)Google Scholar
  7. Bogoliubov, N.N.: Quasimittelwerte in problemen der statistischen mechanik. I. Phys. Abhandl. Sowjetunion 6(2), 1–228 (1962a)MathSciNetGoogle Scholar
  8. Bogoliubov, N.N.: Quasimittelwerte in problemen der statistischen mechanik. II. Phys. Abhandl. Sowjetunion 6(3), 229–284 (1962b)Google Scholar
  9. Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. Roy. Soc. A 145, 699–730 (1934)CrossRefADSGoogle Scholar
  10. Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. II. Proc. Roy. Soc. A 151, 540–566 (1935)CrossRefADSGoogle Scholar
  11. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  12. Domb, C., Green, M.S., and Domb, C., Lebowitz, J.L. (eds.): Phase Transitions and Critical Phenomena. Academic, London (1972–2001)Google Scholar
  13. Essam, J.W., Fisher, M.E.: Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point. Chem. Phys. 38(4), 802 (1963)ADSGoogle Scholar
  14. Feynman, R.P.: Statistical Mechanics: A Set of Lectures. W.A. Benjamin, Reading (1972)Google Scholar
  15. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, New York (1902)zbMATHGoogle Scholar
  16. Glasser, M.L.: Exact partition function for the two-dimensional Ising model. Am. J. Phys. 38(8), 1033 (1970)CrossRefADSMathSciNetGoogle Scholar
  17. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Perseus Books Publishing, L.L.C., Reading (1992)Google Scholar
  18. Gunton, J.D., Droz, M.: Introduction to the Theory of Metastable and Unstable States (Lecture Notes in Physics), vol. 183. Springer-Verlag, Berlin (1983)CrossRefGoogle Scholar
  19. Heisenberg, W.: Zur theorie des ferromagnetismus. Z. Phys. 49(9–10), 619–636 (1928)CrossRefADSzbMATHGoogle Scholar
  20. Huang, K.: Statistical Mechanics, 2nd ed. Wiley, New York (1987)zbMATHGoogle Scholar
  21. Hurst, C.A., Green, H.S.: New solution of the Ising problem for a rectangular lattice. Chem. Phys. 33(4), 1059 (1960)ADSMathSciNetGoogle Scholar
  22. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Physik 31, 253–258 (1925)CrossRefADSGoogle Scholar
  23. Kac, M., Ward, J.C.: A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 88(6), 1332 (1952)CrossRefADSzbMATHGoogle Scholar
  24. Kashchiev, D.: Nucleation: Basic Theory with Applications. Butterworth Heinemann, Oxford (2000)Google Scholar
  25. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60(3), 252 (1941a)CrossRefADSMathSciNetGoogle Scholar
  26. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part II. Phys. Rev. 60(3), 263 (1941b)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. Kubo, R., Ichimura, H., Usui, T., Hashitsume, N.: Statistical Mechanics: An Advanced Course with Problems and Solutions, 8th ed. North Holland, Amsterdam (1988)Google Scholar
  28. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1, 3rd ed. Course of Theoretical Physics, vol. 5. Pergamon Press, Oxford (1980)Google Scholar
  29. Lenz, W.: Beiträge zum verständnis der magnetischen eigenschaften in festen körpern. Physik. Z. 21, 613–615 (1920)Google Scholar
  30. Ley-Koo, M., Green, M.S.: Revised and extended scaling for coexisting densities of SF6. Phys. Rev. A 16(6), 2483–2487 (1977)CrossRefADSGoogle Scholar
  31. Ma, S.K.: Modern Theory of Critical Phenomena. Benjamin, Reading (1976)Google Scholar
  32. Ma, S.K.: Statistical Mechanics. World Scientific, Singapore (1985)CrossRefzbMATHGoogle Scholar
  33. Matsubara, T., Matsuda, H.: A lattice model of liquid helium. Prog. Theor. Phys. 16(4), 416–417 (1956)CrossRefADSGoogle Scholar
  34. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117–149 (1944)CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. Pathria, R.K.: Statistical Mechanics, 2nd ed. Butterworth-Heinemann, Oxford (1996)zbMATHGoogle Scholar
  36. Pittman, C., Doiron, T., Meyer, H.: Equation of state and critical exponents of 3He and a 3He-4He mixture near their liquid-vapor critical point. Phys. Rev. B 20(9), 3678–3689 (1979)CrossRefADSGoogle Scholar
  37. Potts, R.B.: Some generalized order-disorder transformation. Math. Proc. Camb. Phil. Soc. 48(01), 106–109 (1952)CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. Potts, R.B., Ward, J.C.: The combinatorial method and the two-dimensional Ising model. Prog. Theor. Phys. 13(1), 38–46 (1955)CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)Google Scholar
  40. Rushbrooke, G.S.: On the thermodynamics of the critical region for the Ising problem. Chem. Phys. 39(3), 842 (1963)ADSGoogle Scholar
  41. Sommerfeld, A.: Thermodynamics and Statistical Mechanics. Academic, New York (1956)zbMATHGoogle Scholar
  42. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford (1971)Google Scholar
  43. ter Haar, D.: Elements of Statistical Mechanics. Rinehart, New York (1954)zbMATHGoogle Scholar
  44. Vdovichenko, N.V.: A calculation of the partition function for a plane dipole lattice. Sov. JETP 20(2), 477 (1965a)MathSciNetGoogle Scholar
  45. Vdovichenko, N.V.: Spontaneous magnetization of a plane dipole lattice. Sov. JETP 21(2), 350 (1965b)ADSMathSciNetGoogle Scholar
  46. Weiss, P.M.P.: L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Théor. Appl. 6(1), 661–690 (1907)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Structures, Processes and Engineered Materials CenterSkolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations