Ensemble Theory in Statistical Physics: Free Energy Potential

  • Sergey G. AbaimovEmail author
Part of the Springer Series in Synergetics book series (SSSYN)


In this chapter, we discuss the basic formalism of statistical physics. Also, we consider in detail the concept of the free energy potential.


Partition Function Statistical Weight Energy Fluctuation Helmholtz Energy Thermal Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abaimov, S.G.: Statistical Physics of Complex Systems (in Russian), 2nd edn. Synergetics: From Past to Future, vol. 57, URSS, Moscow (2013)Google Scholar
  2. Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinskii, I.Y.: Quantum Field Theoretical Methods in Statistical Physics. Pergamon, Oxford (1965)zbMATHGoogle Scholar
  3. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)zbMATHGoogle Scholar
  4. Boltzmann, L. (ed.) McGuinness, B.F.: Theoretical Physics and Philosophical Problems: Selected Writings. Springer, Netherlands (1974)CrossRefGoogle Scholar
  5. Chrisholm, J.S.R., Borde, A.H.: An Introduction to Statistical Mechanics. Pergamon, New York (1958)Google Scholar
  6. Clausius, M.R.: On the moving force of heat, and the laws regarding the nature of heat itself which are deducible therefrom. Phil. Mag. 2 (4th Series), 1–21, 102–119 (1851)Google Scholar
  7. Clausius, R.: Mechanical Theory of Heat, with its Applications to the Steam-Engine and to the Physical Properties of Bodies. John van Voorst, London (1867)Google Scholar
  8. Ehrenfest, P., Ehrenfest, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca (1959)zbMATHGoogle Scholar
  9. Eyring, H., Henderson, D., Stover, B.J., Eyring, E.M.: Statistical Mechanics and Dynamics. Wiley, New York (1963)Google Scholar
  10. Feynman, R.P.: Statistical Mechanics: A Set of Lectures. W.A. Benjamin, Reading (1972)Google Scholar
  11. Fowler, R.H.: Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge (1955)Google Scholar
  12. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 108–248 (1876)Google Scholar
  13. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 343–520 (1878)Google Scholar
  14. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Scribner’s, New York (1902)zbMATHGoogle Scholar
  15. Gibbs, J.W.: The Scientific Papers, vol. 1. Longman, London (1906)zbMATHGoogle Scholar
  16. Hill, T.L.: Statistical Mechanics. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  17. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)zbMATHGoogle Scholar
  18. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Physik. 31, 253–258 (1925)CrossRefADSGoogle Scholar
  19. Kittel, C.: Elementary Statistical Physics. Wiley, New York (1958)Google Scholar
  20. Kittel, C.: Thermal Physics. Wiley, New York (1969)Google Scholar
  21. Kubo, R., Ichimura, H., Usui, T., Hashitsume, N.: Statistical Mechanics: An Advanced Course with Problems and Solutions, 8th edn. North Holland, Amsterdam (1988)Google Scholar
  22. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1, 3rd edn. Course of Theoretical Physics, vol. 5. Pergamon, Oxford (1980)Google Scholar
  23. Ma, S.K.: Statistical Mechanics. World Scientific, Singapore (1985)CrossRefzbMATHGoogle Scholar
  24. Mayer, J.E., Mayer, M.G.: Statistical Mechanics. Wiley, New York (1940)zbMATHGoogle Scholar
  25. Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford (1996)zbMATHGoogle Scholar
  26. Plischke, M., Bergersen, B.: Equilibrium Statistical Physics, 3rd edn. World Scientific, Singapore (2005)Google Scholar
  27. Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)Google Scholar
  28. Reif, F.: Statistical Physics, vol. 5. Berkeley Physics Course. McGraw-Hill, New York (1967)Google Scholar
  29. Rushbrooke, G.S.: Introduction to Statistical Mechanics. Clarendon, Oxford (1955)Google Scholar
  30. Schrödinger, E.: An undulatory theory of the mechanics of atoms an molecules. Phys. Rev. 28(6), 1049–1070 (1926)CrossRefADSzbMATHGoogle Scholar
  31. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  32. Sommerfeld, A.: Thermodynamics and Statistical Mechanics. Academic, New York (1956)zbMATHGoogle Scholar
  33. ter Haar, D.: Elements of Statistical Mechanics. Rinehart, New York (1954)zbMATHGoogle Scholar
  34. Tolman, R.C.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1938)Google Scholar
  35. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)zbMATHGoogle Scholar
  36. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Structures, Processes and Engineered Materials CenterSkolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations