# Fractals

• Sergey G. Abaimov
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

## Abstract

The power-law dependences in the vicinity of a critical point could often be attributed to the self-similarity and fractal nature of clusters. Therefore, in this chapter, we discuss the basic formalism of fractals. We consider this chapter to be a prerequisite of fractals. Required for further discussions, we consider understanding of both the concept of fractal dimensionality and the origin of fractal power-law dependences. The reader, proficient in these concepts, can skip this chapter.

Since we consider this chapter to be a prerequisite, we only briefly discuss ideas behind the formalism of fractals, providing basic, intuitive understanding. For ­further study, we refer the reader to brilliant textbooks (Feder 1988; Vicsek 1992; Falconer 2003) and references therein.

Besides the fractals, we also discuss multifractals. Although multifractals with complex geometric support will not be applied directly in the further chapters, we encourage the reader to study their formalism in view of its similarities with the concepts of statistical physics.

## Keywords

Infinite Iteration Maximal Term Sierpinski Carpet Daughter Branch Logarithmic Accuracy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Abaimov, S.G.: Statistical Physics of Complex Systems, 2nd ed. Synergetics, Moscow (2013) (in Russian) (From Past to Future, vol. 57, URSS)Google Scholar
2. Besicovitch, A.S.: On linear sets of points of fractional dimension. Math. Ann. 101(1), 161–193 (1929)
3. Besicovitch, A.S., Ursell, H.D.: Sets of fractional dimensions. J. Lond. Math. Soc. 12(1), 18–25 (1937)Google Scholar
4. Bouligand, G.: Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. 52, 320–344, 361–376 (1928) (Series 2)
5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Springer, New York (1975) (Lecture Notes in Mathematics)
6. Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Berlin (1994)Google Scholar
7. Bunde, A., Havlin, S. (eds.): Fractals and Disordered Systems, 2nd ed. Springer. Berlin (1996)Google Scholar
8. Cantor, G.: Ueber unendliche, lineare punktmannichfaltigkeiten. Math. Ann. 21, 545–591 (1883)
9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, Chichester (2003)
10. Feder, J.: Fractals. Physics of Solids and Liquids. Springer, New York (1988)Google Scholar
11. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 108 (1876)Google Scholar
12. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 343 (1878)Google Scholar
13. Grassberger, P.: Generalized dimensions of strange attractors. Phys. Lett. A 97(6), 227–230 (1983)
14. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)
15. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33(2), 1141–1151 (1986)
16. Hausdorff, F.: Dimension und äußeres maß. Math. Ann. 79(1–2), 157–179 (1918)
17. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435–444 (1983)
18. Hölder, O.: Beiträge zur Potentialtheorie. University of Tübingen (1882)Google Scholar
19. von Koch, H.: Sur une courbe continue sans tangente, obtenue par une construction géométrique élémetaire. Ark. Mat. Astr. Phys. 1, 681–702 (1904)
20. Kolmogorov, A.: A new invariant for transitive dynamical systems. Doklady Akademii Nauk SSSR 119, 861 (1958)
21. Lipschitz, R.: Lehrbuch der Analysis. Grundlagen der Analysis, vol. 1–2. Verlag von Max Cohen & Sohn (Fr. Cohen), Bonn (1877–1880)Google Scholar
22. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence, vol. 12, pp. 333–351. Springer, New York (1972) (Lecture Notes in Physics)
23. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62(02), 331–358 (1974)
24. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W.H. Freeman & Co, San Francisco (1975)
25. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Co, San Francisco (1982)
26. Mandelbrot, B.B., Given, J.A.: Physical properties of a new fractal model of percolations clusters. Phys. Rev. Lett. 52, 1853 (1984)
27. Ruelle, D.: Thermodynamic Formalism, vol. 5. Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading (1978)Google Scholar
28. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)
29. Sierpiński, W.: Sur une courbe dont tout point est un point de ramification. C.R. Hebd. Sea. Acad. Sci., Paris 160, 302–305 (1915)
30. Sierpiński, W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C.R. Hebd. Sea. Acad. Sci., Paris 162, 629–632 (1916)
31. Sinai, Y.G.: Gibbs Measures in Ergodic Theory. Russ. Math. Surv. 27, 21 (1972)
32. Smith, H.J.S.: On the integration of the discontinuous functions. Proc. Lond. Math. Soc. 6, 140–153 (1874) (Series 1)
33. Vicsek, T.: Fractal Growth Phenomena, 2nd ed. World Scientific, Singapore (1992)