Advertisement

Fractals

  • Sergey G. AbaimovEmail author
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

The power-law dependences in the vicinity of a critical point could often be attributed to the self-similarity and fractal nature of clusters. Therefore, in this chapter, we discuss the basic formalism of fractals. We consider this chapter to be a prerequisite of fractals. Required for further discussions, we consider understanding of both the concept of fractal dimensionality and the origin of fractal power-law dependences. The reader, proficient in these concepts, can skip this chapter.

Since we consider this chapter to be a prerequisite, we only briefly discuss ideas behind the formalism of fractals, providing basic, intuitive understanding. For ­further study, we refer the reader to brilliant textbooks (Feder 1988; Vicsek 1992; Falconer 2003) and references therein.

Besides the fractals, we also discuss multifractals. Although multifractals with complex geometric support will not be applied directly in the further chapters, we encourage the reader to study their formalism in view of its similarities with the concepts of statistical physics.

Keywords

Infinite Iteration Maximal Term Sierpinski Carpet Daughter Branch Logarithmic Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abaimov, S.G.: Statistical Physics of Complex Systems, 2nd ed. Synergetics, Moscow (2013) (in Russian) (From Past to Future, vol. 57, URSS)Google Scholar
  2. Besicovitch, A.S.: On linear sets of points of fractional dimension. Math. Ann. 101(1), 161–193 (1929)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Besicovitch, A.S., Ursell, H.D.: Sets of fractional dimensions. J. Lond. Math. Soc. 12(1), 18–25 (1937)Google Scholar
  4. Bouligand, G.: Ensembles impropres et nombre dimensionnel. Bull. Sci. Math. 52, 320–344, 361–376 (1928) (Series 2)zbMATHGoogle Scholar
  5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Springer, New York (1975) (Lecture Notes in Mathematics)zbMATHGoogle Scholar
  6. Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Berlin (1994)Google Scholar
  7. Bunde, A., Havlin, S. (eds.): Fractals and Disordered Systems, 2nd ed. Springer. Berlin (1996)Google Scholar
  8. Cantor, G.: Ueber unendliche, lineare punktmannichfaltigkeiten. Math. Ann. 21, 545–591 (1883)CrossRefMathSciNetGoogle Scholar
  9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, Chichester (2003)CrossRefGoogle Scholar
  10. Feder, J.: Fractals. Physics of Solids and Liquids. Springer, New York (1988)Google Scholar
  11. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 108 (1876)Google Scholar
  12. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3, 343 (1878)Google Scholar
  13. Grassberger, P.: Generalized dimensions of strange attractors. Phys. Lett. A 97(6), 227–230 (1983)CrossRefADSMathSciNetGoogle Scholar
  14. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33(2), 1141–1151 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. Hausdorff, F.: Dimension und äußeres maß. Math. Ann. 79(1–2), 157–179 (1918)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435–444 (1983)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. Hölder, O.: Beiträge zur Potentialtheorie. University of Tübingen (1882)Google Scholar
  19. von Koch, H.: Sur une courbe continue sans tangente, obtenue par une construction géométrique élémetaire. Ark. Mat. Astr. Phys. 1, 681–702 (1904)zbMATHGoogle Scholar
  20. Kolmogorov, A.: A new invariant for transitive dynamical systems. Doklady Akademii Nauk SSSR 119, 861 (1958)zbMATHMathSciNetGoogle Scholar
  21. Lipschitz, R.: Lehrbuch der Analysis. Grundlagen der Analysis, vol. 1–2. Verlag von Max Cohen & Sohn (Fr. Cohen), Bonn (1877–1880)Google Scholar
  22. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence, vol. 12, pp. 333–351. Springer, New York (1972) (Lecture Notes in Physics)CrossRefGoogle Scholar
  23. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62(02), 331–358 (1974)CrossRefADSzbMATHGoogle Scholar
  24. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W.H. Freeman & Co, San Francisco (1975)zbMATHGoogle Scholar
  25. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Co, San Francisco (1982)zbMATHGoogle Scholar
  26. Mandelbrot, B.B., Given, J.A.: Physical properties of a new fractal model of percolations clusters. Phys. Rev. Lett. 52, 1853 (1984)CrossRefADSGoogle Scholar
  27. Ruelle, D.: Thermodynamic Formalism, vol. 5. Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading (1978)Google Scholar
  28. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  29. Sierpiński, W.: Sur une courbe dont tout point est un point de ramification. C.R. Hebd. Sea. Acad. Sci., Paris 160, 302–305 (1915)zbMATHGoogle Scholar
  30. Sierpiński, W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C.R. Hebd. Sea. Acad. Sci., Paris 162, 629–632 (1916)zbMATHGoogle Scholar
  31. Sinai, Y.G.: Gibbs Measures in Ergodic Theory. Russ. Math. Surv. 27, 21 (1972)CrossRefADSzbMATHMathSciNetGoogle Scholar
  32. Smith, H.J.S.: On the integration of the discontinuous functions. Proc. Lond. Math. Soc. 6, 140–153 (1874) (Series 1)CrossRefGoogle Scholar
  33. Vicsek, T.: Fractal Growth Phenomena, 2nd ed. World Scientific, Singapore (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Structures, Processes and Engineered Materials CenterSkolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations