Skip to main content

Ecosystem Services: Pest Control and Pollination

  • Chapter
  • First Online:
Book cover Economic Evaluation of Climate Change Impacts

Part of the book series: Springer Climate ((SPCL))

Abstract

Among the several ecosystem services delivered by biodiversity, natural pest control and pollination are comparatively well understood and highly relevant for ensuring food provision. We describe the potential impacts of climate change, in particular the effects of increasing temperatures, on pest antagonists and pollinators, and evaluate the relevance for Austria’s agricultural ecosystems. Temperature changes lead to species range shifts, causing a reshuffling of assemblages and a decoupling of community interactions, followed by an impairment of pest control and pollination services. The effects are strongly modulated by socio-economic factors, particularly the development of semi-natural elements in agricultural landscapes. An enlargement of semi-natural area might mitigate the effects of climate change; a reduction in semi-natural area might exacerbate the climatic effects by impeding migration to track temperature changes even further. We calculated the value of pest control in Austria to be approximately 255 million euros or 8.5 % of the total agricultural plant product value in 2008. Pollination in Austria is worth 298 million euros, corresponding to 9.9 % of the total agricultural plant product value. We distinguish and discuss four possible climate impact scenarios; a scenario describing a moderate reduction of these values emerged as the most likely one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287

    Article  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  Google Scholar 

  • Bayram A, Luff ML (1993) Winter abundance and diversity of lycosids (Lycosidae, Araneae) and other spiders in grass tussocks in a field margin. Pedobiologia 37:357–364

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Biesmeijer J, Roberts S, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 13:351–354

    Article  Google Scholar 

  • Carvalheiro L, Veldtman R, Shenkute A et al (2011) Natural and within-farmland biodiversity enhances crop productivity. Ecol Lett 14:251–259

    Article  Google Scholar 

  • Civantos E, Thuiller W, Maiorano L et al (2012) Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. BioScience 62:658–666

    Article  Google Scholar 

  • Clusella-Trullas S, Chown SL (2011) Comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537

    Article  Google Scholar 

  • Dell D, Sparks T, Dennis R (2005) Climate change and the effect of increasing spring temperatures on emerge dates on the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur J Entomol 102:161–167

    Article  Google Scholar 

  • D'Hulster M, Desender K (1982) Ecological and faunal studies of Coleoptera in agricultural land. III. Seasonal abundance and hibernation of Staphylinidae in the grassy edge of a pasture. Pedobiologia 23:403–414

    Google Scholar 

  • Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492

    Article  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–707

    Article  Google Scholar 

  • Dormann C, Schweiger O, Arens P (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett 11:235–244

    Article  Google Scholar 

  • Dunn P, Winkler D (2010) Effects of climate change on timing of breeding and reproducing success in birds. In: Moller A (ed) Effects of climate change on birds. Oxford University Press, Oxford, pp 113–128

    Google Scholar 

  • Ehrlich P, Ehrlich A (1981) Extinction: the causes and consequences of the disappearance of species. Random House, New York

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C et al (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol 12:1545–1553

    Article  Google Scholar 

  • Gallai N, Salles J, Settele J et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Garibaldi L, Steffan-Dewenter I, Kremen C et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  Google Scholar 

  • Gonzáles-Varo J, Biesmeijer J, Bommarco R (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530

    Article  Google Scholar 

  • Grünbacher EM, Kromp B, Formayer H, Hann P (2006) Einflüsse des Klimawandels auf landwirtschaftliche Schädlinge und Nützlinge im Biologischen Landbau Österreichs, Endbericht zum Projekt StartClim2005.C3a. Bio Forschung Austria, Wien. http://www.austroclim.at/fileadmin/user_upload/reports/StCl05C3a.pdf. Accessed 27 Aug 2013

  • Hänke S, Scheid B, Schaefer M et al (2009) Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J Appl Ecol 46:1106–1114

    Article  Google Scholar 

  • Harte J, Ostling A, Green JL et al (2004) Climate change and extinction risk. Nature 430:6995

    Article  Google Scholar 

  • He F, Hubbell SP (2011) Species-area relationships always overestimate extinction rates from habitat loss. Nature 473:368–371

    Article  Google Scholar 

  • Hegland S, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  Google Scholar 

  • Hickling R, Roy D, Hill J et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hodgson JA, Thomas CD, Dytham C et al (2012) The speed of range shifts in fragmented landscapes. PLoS One 7:e47141

    Article  Google Scholar 

  • Jeffs CT, Lewis OT (2013) Effects of climate warming on host-parasitoid interactions. Ecol Entomol 38:209–218

    Article  Google Scholar 

  • Jönsson A, Appelberg M, Harding G et al (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol 15:486–499

    Article  Google Scholar 

  • Kleijn D, Báldi A (2005) Effects of set-aside land on farmland biodiversity: comments on Van Buskirk and Willi. Conserv Biol 10:963–966

    Article  Google Scholar 

  • Kleijn D, Baquero RA, Clough Y et al (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254

    Article  Google Scholar 

  • Klein A, Vaissière B, Cane J et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  Google Scholar 

  • Le Conte Y, Navajas M (2008) Climate change: impact on honey bee populations and diseases. Rev Sci Tech Off Int Epizoot 27:499–510

    Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience 56:311–323

    Article  Google Scholar 

  • Maes J, Paracchini M, Zulian G (2011) A European assessment of the provision of ecosystem services. European Commission Joint Research Centre, Luxembourg

    Google Scholar 

  • Mair L, Thomas CD, Anderson BJ et al (2012) Temporal variation in responses of species to four decades of climate warming. Glob Chang Biol 18:2439–2447

    Article  Google Scholar 

  • Mantyka-Pringle C, Martin TG, Rhodes JR (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol 18:1239–1252

    Article  Google Scholar 

  • Memmott J, Craze P, Waser N et al (2007) Global warming and the disruption of plant-species interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Müller A, Krebs A, Amiet F (1997) Bienen—Mitteleuropäische Gattungen, Lebensweisen, Beobachtungen. Weltbild Verlag, Augsburg

    Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45

    Article  Google Scholar 

  • OECD-FAO Organisation for Economic Co-operation and Development-Food and Agriculture Organization of the United Nations (2013) OECD-FAO Agricultural Outlook 2013–2022. OECD Publishing, Paris

    Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222

    Article  Google Scholar 

  • Reddy P, Verghese A, Rajan V et al (2012) Potential impact of climate change on honeybees (Apis spp.) an their pollination services. Pest Manag Hort Ecosyst 18:121–127

    Google Scholar 

  • Roy D, Sparks T (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416

    Article  Google Scholar 

  • Scheifinger H, Menzel A, Koch E et al (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. Int J Climatol 22:1739–1755

    Article  Google Scholar 

  • Schoener TW (1989) The ecological niche. In: Cherrett JM, Bradshaw AD, Goldsmith FB et al (eds) Ecological concepts. The contribution of ecology to an understanding of the natural world. Blackwell, Oxford, pp 79–113

    Google Scholar 

  • Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  Google Scholar 

  • Schweiger O, Biesmeijer J, Bommarco R et al (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795

    Google Scholar 

  • Settele J, Kudrna O, Harpke A et al (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia

    Google Scholar 

  • Sinervo B, Méndez-De-La-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    Article  Google Scholar 

  • Sinervo B, Miles DB, Martínez-Méndez N et al (2011) Response to comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537–538

    Article  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Article  Google Scholar 

  • Statistik Austria (2009) Statistik der Landwirtschaft. Statistik Austria, Wien

    Google Scholar 

  • Stearns S (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stefanescu C, Penuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Chang Biol 9:1494–1506

    Article  Google Scholar 

  • Stireman JO III, Dyer LA, Janzen DH et al (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci 102:17384–17387

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Thomas C, Franco A, Hill J (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21(8):415–416

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Pearson RG et al (2004) Uncertainty in predictions of extinction risk. Nature 430. doi: 10.1038/nature02716

  • Tobin P, Nagarkatti S, Loeb G et al (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Chang Biol 14:951–957

    Article  Google Scholar 

  • Tylianakis JM, Rand TA, Kahmen A et al (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 6:947–956

    Google Scholar 

  • Van Buskirk J, Willi Y (2004) Enhancement of farmland biodiversity within set-aside land. Conserv Biol 18:987–994

    Article  Google Scholar 

  • Van Grunsven RHA, van der Putten WH, Bezemer TM et al (2010) Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Glob Chang Biol 16:380–385

    Article  Google Scholar 

  • Van Zeijts H, Overmars K, van der Bilt W et al (2011) Greening the common agricultural policy: impacts on farmland biodiversity on an EU scale. PBL Netherlands Environmental Assessment Agency, The Hague

    Google Scholar 

  • Vanbergen A, Baude M, Biesmeijer J et al (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • Voigt W, Perner J, Davis AJ et al (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453

    Article  Google Scholar 

  • von Witzke H (2008) Agriculture, world food security, bio-energy and climate change: some inconvenient facts. Quart J Int Agric 47:1–4

    Google Scholar 

  • Walther G, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc Lond B 272:1427–1432

    Article  Google Scholar 

  • Wilson R, Gutiérrez D, Gutiérrez J et al (2005) Changes to elevation limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  Google Scholar 

  • Yudelman M, Ratta A, Nygaard D (1998) Pest management and food production: looking into the future. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336:1516

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate feedback by Paul Watkiss, Reimund Schwarze and Martin König on a first manuscript draft, the comments of three anonymous reviewers and Birgit Bednar-Friedl on a second draft; linguistic corrections by Brigitte Read, inspiring discussions with Wolfgang Rabitsch and the encouragement of Maria Stejskal-Tiefenbach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Peter Zulka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zulka, K.P., Götzl, M. (2015). Ecosystem Services: Pest Control and Pollination. In: Steininger, K., König, M., Bednar-Friedl, B., Kranzl, L., Loibl, W., Prettenthaler, F. (eds) Economic Evaluation of Climate Change Impacts. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-12457-5_10

Download citation

Publish with us

Policies and ethics