Advertisement

Stable Isotopes in Study of the Global Hydrological Cycle

  • V. I. FerronskyEmail author
Chapter
  • 1.1k Downloads
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The famous Finnish geochemist Rankama wrote in 1954 that isotope geology is a branch of science in which geologic phenomena are studied by investigating stable and unstable isotopes of individual elements, in particular by determining the variations in their abundance. Isotope geology deals with both stable and radioactive isotopes. In this chapter the distribution, hydrogeochemistry and geophysics of naturally occurring stable hydrogen and oxygen isotopes in the atmosphere, oceans, surface and groundwater in brief form are discussed. Using the isotope variation, occurring under natural effects, the origin, dynamics and resident time of water in hydrosphere reservoirs are analysed.

Keywords

Isotopic Composition Oxygen Isotope Meteoric Water Thermal Water Fractionation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alekseev FA, Gorbushina LV, Ovchinnikov AM, Tyminsky VG (1966) Age of water from the Tashkent artesian basin. In: Alekseev FA (ed Voprosy isotopnoi geologii, vol 3. Nedra, Moskva, pp 40–45Google Scholar
  2. Alekseev FA, Vetshtein VE, Malyuk GA (1974) The isotopic composition of hydrogen and oxygen in groundwater of the Amu-Darya gas and oil-bearing basin as a criterion of its genesis and dynamics. In: Alekseev FA (ed) Yadernaya geologiya. Nedra, Moskva, pp 62–74Google Scholar
  3. Alekseev FA, Gottikh RP, Saakov SA, Sokolovsky EV (1975) Radiochemical and isotopic investigations of groundwater in gas and oil-bearing areas of the USSR. Nedra, MoskvaGoogle Scholar
  4. Arnason B (1977) The hydrogen-water isotope thermometer applied to geothermal areas in Iceland. Geothermics 5:75–80CrossRefGoogle Scholar
  5. Arnason B, Sigurgeirsson T (1967) Hydrogen isotopes in hydrological studies in Iceland. In: Isotopes in hydrology: proceedings of a symp. IAEA, Vienna, pp 35–47Google Scholar
  6. Babinets AY, Lugova GP, Markus VI (1971) Oxygen isotopic composition of groundwater of Ukrainian Carpathians region. Dokl AN URSR 7:579–581Google Scholar
  7. Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett 31:341–344CrossRefGoogle Scholar
  8. Banwell CJ (1963) Oxygen and hydrogen isotopes in New Zealand thermal areas. In: Tongeorgi E (ed) Nuclear geology on geothermal areas: Spoletto. Cons Naz delle Ric, Piazzale Aldo Moro, pp 95–138Google Scholar
  9. Baskov EA, Vetstein VE, Surikov SN (1973) Isotopic composition of Н, О, С, Аr, and He in thermal waters and gases of the Kurilo-Kamchatka volcanous region as an indicator of their formation. Geokhimiya 2:180–189Google Scholar
  10. Bath AH, Edmunds WM, Andrews JN (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: IAEA (ed) Isotope hydrology 1978: proc symp. IAEA, Vienna, pp 545–566Google Scholar
  11. Beus AA (1972) Geochemistry of the lithosphere. Nedra, MoskvaGoogle Scholar
  12. Boato G, Careri G, Volpi GG (1952) Hydrogen isotopes in steam wells. Nuovo Cim 9:539–540CrossRefGoogle Scholar
  13. Bowen RM (1966) Paleotemperature analysis. Elsevier, AmsterdamGoogle Scholar
  14. Brezgunov VS (1978) Regularity in distribution of hydrogen and oxygen stable isotopes distribution in natural waters during their global circulation. In: Ferronsky VI (ed) Isotopy of natural waters. Nauka, Moskva, pp 10–45Google Scholar
  15. Brezgunov VS, Nechaev VV (1981) Water balance and balance of oxygen stable isotopes in the Issyk-Kul depression. In: Ferronsky VI (ed) Investigation of natural waters by isotope methods. Nauka, Moskva, pp 10–14Google Scholar
  16. Brezgunov VS, Nechaev VV, Erokhin VS (1979) Study of hydrogen and oxygen stable isotope distribution during water exchange in the Issyk-Kul depress. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 61–69Google Scholar
  17. Brodsky AI (1957) Chemistry of Isotopes Izd. AN SSSR, MoskvaGoogle Scholar
  18. Brown RM (1970) Distribution of hydrogen isotopes in Canada waters. In: IAEA (ed) Isotope hydrology: proceedings of a symp. IAEA, Vienna, pp 3–21Google Scholar
  19. Bullard E (1978) Review of ideas of plate tectonics. In: Fischer AG, Judson S (eds) Petroleum and global tectonics. Nedra, Moskva, pp 9-20 (trans: from English)Google Scholar
  20. Clayton RN (1961) Oxygen isotopic fractionation between calcium carbonate and water. J Chem Phys 34:724–726CrossRefGoogle Scholar
  21. Clayton RN, Friedman I, Graf DL et al (1966) The origin of saline formation waters: 1. Isotopic composition. J Geophys Res 71:3869–3882CrossRefGoogle Scholar
  22. Coplen TB, Hanshow BB (1973) Ultrafiltration by a compacted clay membrane, 1. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310CrossRefGoogle Scholar
  23. Cortecci G (1974) Oxygen isotope ratios of sulfate ions-water pairs as a possible geothermometer. Geothermics 3:60–64CrossRefGoogle Scholar
  24. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834CrossRefGoogle Scholar
  25. Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongeorgi E (ed) Nuclear geology of geothermal areas: Spoletto. Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, pp 17–53Google Scholar
  26. Craig H (1966) Isotopic composition and origin of the red sea and salton sea geothermal brines. Science 154:1544–1548CrossRefGoogle Scholar
  27. Craig H (1969) Geochemistry and origin of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in red Sea. Springer, New York, pp 208–242Google Scholar
  28. Craig H, Gordon L (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongeorgi E (ed) Stable isotopes in oceanographic Studies and paleotemperatures: Spoletto, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, pp 9–130Google Scholar
  29. Craig H, Gordon L, Horibe Y (1963) Isotopic exchange effects in the evaporation of water. 1. Low-temperature experimental results. J Geophys Res 68:5079–5087CrossRefGoogle Scholar
  30. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 19:435–463Google Scholar
  31. Dansgaard W, Jonhnson SJ, Möller J et al (1971) One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science 166:377–380CrossRefGoogle Scholar
  32. Degens ET, Epstein S (1964) Oxygen and carbon isotopic ratios in coexisting calcites and dolomites from resent and ancient sediments. Geochim Cosmochim Acta 28:23–44Google Scholar
  33. Degens ET, Hunt JM, Reuter JH et al (1964) Data on the distribution of aminoacides and oxygen isotopes in petroleum brine waters of various geologic ages. Sedimentology 3:199–225CrossRefGoogle Scholar
  34. Dinçer T, Noory M, Javed ARK et al (1974) Study of groundwater recharge and movement in shallow and deep aquifers in Saudy Arabia with stable isotopes and salinity data. In: IAEA (ed) Isotope techniques in groundwater hydrology: proceedings of a symp. IAEA, Vienna, vol 1, pp 364–374Google Scholar
  35. Drost W, Mozer H, Neumaier F et al (1972) Isotopenmetoden in der Grundwasserkunde, Inf. 61, Büro Eurisotop, Brussels, p 178Google Scholar
  36. Emiliani C (1970) Pleistocene paleotemperatures. Science 168:822–824CrossRefGoogle Scholar
  37. Epstein S (1978) The D/H ratio of cellulose in a New Zealand Pinus Radiata. A reply to the criticism of A.T. Wilson and V.J. Grinsted. Earth Planet Sci Lett 39:303–307CrossRefGoogle Scholar
  38. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–214CrossRefGoogle Scholar
  39. Epstein S, Sharp RP, Gow AJ (1970) Antarctic ice sheet: stable isotope analyses of Bird Station cores and interhemispheric climatic implications. Science 168:1570–1572CrossRefGoogle Scholar
  40. Eriksson E (1965) Deuterium and oxygen-18 in precipitation and other natural waters. Tellus 17:498–512CrossRefGoogle Scholar
  41. Esikov AD, Erokhin VE, Chernikova NS et al (1979) Genesis of mud volcanos, south-west of Turkmenia, by hydrogen isotope content. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 70–74Google Scholar
  42. Evans GV, Otlet RL, Downing RA et al (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In: IAEA (ed) Isotope hydrology: proceedings of a symp. IAEA, Vienna, vol 2, pp 679–706Google Scholar
  43. Fairbridge RW (1964) The importance of limestone and its Ca/Mg content to paleoclimanology. Intersci Lett, pp 431–478Google Scholar
  44. Ferrara GC, Gonfiantini R, Panichi G (1965) La composizione isotopica della vapore di alcuni soffioni di Larderello e della’acqua di alcune sorgenti e moffete della Toscana. Atti Soc Tosc Sci Nat 15:113–140Google Scholar
  45. Ferronsky VI, Polyakov VA (1983) Isotopy of the Hydrosphere. Nauka, MoskvaGoogle Scholar
  46. Ferronsky VI, Polyakov VA (2012) Isotopes in the Earth;s hydrosphere. Springer, DordrechtCrossRefGoogle Scholar
  47. Fontes JC, Bortolami GC, Zuppi GM (1979) Hydrologie isotopique Hydrologie isotopique du Massif du Mont-Blanc. In: IAEA (ed) Isotope Hydrology, 1978: proceedings of a symp. IAEA, Vienna, vol 1, pp 411–436Google Scholar
  48. Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103CrossRefGoogle Scholar
  49. Friedman I, Sigurgeirsson T, Gardarsson O (1963) Deuterium in Island waters. Geochim Cosmochim Acta 27:553–561CrossRefGoogle Scholar
  50. Friedman I, Redfield AC, Schoen B et al (1964) The variation of the deuterium content of natural waters in the hydrologic cucle. Rev Geophys 2:177–224CrossRefGoogle Scholar
  51. Galakhovskaya TV (1967) Distribution of boron, litium stroncium and bromium at evaporation of marine water. In: Valiashko MG (ed) Physical-chemical study of salts and brines. Nedra, Moskva, pp 84–107Google Scholar
  52. Gat JR (1970) Environmental isotope balance of lake Tiberias. In: IAEA (ed) Isotope hydrology: proceedings of a symp. IAEA, Vienna, pp 109–127Google Scholar
  53. Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophhys Res 75:3039–3078CrossRefGoogle Scholar
  54. Gat JR, Dansgaard W (1972) Stable isotope survey of the fresh water occurrence in Israel and Northern Jordan rift valley’. J Hydrology 16:177–212CrossRefGoogle Scholar
  55. Gat JR, Gonfiantini R (eds) (1981) Stable Isotope hydrology; deuterium and oxygen-18 in the water cycle. IAEA, ViennaGoogle Scholar
  56. Gat JR, Tzur Y (1967) Modification of the isotopic composition of rainwater by processes which occur before grounwater recharge. In: IAEA (ed) Isotope hydrology: proceedings of a symp. IAEA, Vienna, pp 49–60Google Scholar
  57. Gat JR, Gonfiantini R, Tongiorgi E (1968) Atmosphere-surface water interaction. In: IAEA (ed) Guidebook on nuclear techniques in hydrology. IAEA, Vienna, pp 175–184Google Scholar
  58. Giggenbach W (1971) Isotopic composition of waters of the Broadlands geothermal field. N Z J. Science 14:959–970Google Scholar
  59. Godfrey J (1962) The deuterium content of hydrous minerals from the East-Central Sierra Nevada and Yosemite National Park. Geochim.Cosmochim Acta 26:1215–1245Google Scholar
  60. Gonfiantini R (1965) Effetti isotopici nell’evapjrazione di acque salate. Atti Soc Tosc Sci Natur Ser A 72:550–588Google Scholar
  61. Gonfiantini R, Gratzini S, Tongiorgi E (1965) Oxygen isotopic composition of water in leaves. In: Isotopes and radiation in soil-plant nutrition studies: proceedings of a symp, IAEA, Vienna, pp 405–410Google Scholar
  62. Gonfiantini R, Dinçer T, Derekoy AM (1974) Environmental isotope hydrology in the Bodna region, Algeria. In: Isotope techniques in groundwater hydrology; proceedings of a symp, IAEA, Vienna, vol. 1, pp 293–316Google Scholar
  63. Gonfiantini R, Conrad C, Fontes JC et al (1976) Etude isotopique de la nappe du Continental intercalaire et de ses relations avec les autres nappes du Sahara septentional. In: Isotope techniques in groundwater hydrology: proc symp, IAEA, Vienna, vol 1, pp 227–240Google Scholar
  64. Gorbushina LV, Tyminsky VG (1974) Radioactive and stable isotopes in geology and hydrology. Atomizdat, Moskva.Google Scholar
  65. Gorbushina LV, Tyminsky VG, Spiridonov AI (1972) On the mechanism of radiohydrogeological anomalies appearance in seismic regions and their significance in earthquake prediction. Sovetskaya Geologiya 1:153–156Google Scholar
  66. Gorbushina LV, Vetshtein VE, Malyuk et al (1974) Hydrogen and oxygen isotopic content in sulphide waters of the Sochi-Adler artesian basin. Geochimiya 9:1102–1106Google Scholar
  67. Graf DL, Friedman J, Meents WF (1965) The origin of saline formation waters. II. Isotopic fractionation by shale micropore systems. U.S. State Geol Surv Circular No. 92Google Scholar
  68. Graf DL, Friedman J, Meents WF (1966) The origin of saline formation waters. III. Calcium chloride waters’, U.S. State Geol Surv Circular No. 397Google Scholar
  69. Gutsalo LK (1980) The rules and factors governing changes in isotopic composition of brines during evaporation (in connection with genesis of underground brines). Geokhemiya 11:1734–1746Google Scholar
  70. Hagemann R, Nief G, Roth T (1970) Absolute D/H ratio for SMOW. Tellus 23:172–175Google Scholar
  71. Harpaz Y, Mandel S, Gat JR, Nir A (1963) The place of isotope methods in groundwater research. In: IAEA (ed) Radioisotopes in hydrology: proceedings of a symposium. IAEA, Vienna, pp 175–191Google Scholar
  72. Hitchon B, Friedman F (1969) Geochemistry and oigin of formation waters in the western Canada sedimentary basin, I. Stable isotopes of hydrogen and oxygen. Geochim Cosmochim Acta 33:1321–1349CrossRefGoogle Scholar
  73. Hitchon B, Krouse HB (1972) Hydrogeochemistry of surface waters of the Mackenzie River drainage basin, Canada, III. Stable isotopes of oxygen, carbon, and sulfur. Geochim Cosmochim Acta 36:1337–1358CrossRefGoogle Scholar
  74. Hübner H, Richter W, Kowski P (1979a) Studies on relationship between surface water and surrounding groundwater of Lake Schwerin (GDR. In: IAEA (ed) Isotopes in lake studies: proc adv group meet. IAEA, Vienna, pp 95–102Google Scholar
  75. Hübner H, Kowski P, Hermichen WD et al (1979b) Regional and temporal variations of deuterium in precipitation and atmospheric moisture of Central Europ. In: IAEA (ed) Isotope hydrology, 1978: proc. symp. IAEA, Vienna, pp 289–305Google Scholar
  76. Hulston JR (1977) Isotope work applied to geothermal systems at the Institute of Nuclear Sciences, New Zealand. Geothermics 5:89–96CrossRefGoogle Scholar
  77. International Atomic Energy Agency (1963) Radioisotopes ih hydrology: proceedings of a symposium. IAEA, ViennaGoogle Scholar
  78. International Atomic Energy Agency (1976) Interpretation of environmental isotope and hydrochemical data in groundwater hydrology: proceedings of an adv group meet. IAEA, ViennaGoogle Scholar
  79. International Atomic Energy Agency (1979a) Behaviour of tritium in the environmen: proceedings of a symposium. IAEA, ViennaGoogle Scholar
  80. International Atomic Energy Agency (1979b) Isotopes in lake studies: proseedings of an adv group meet. IAEA, ViennaGoogle Scholar
  81. James AT, Baker DR (1976) Oxygen isotope exchange between illite and water at 22 °C. Geochim Cosmochi. Acta 40:235–239Google Scholar
  82. Kartsev AA, Vagin SV (1973) The role of clay minerals interlayer water in a history of groundwater formation. Izv Vissh Uch Zaved 3:64–66Google Scholar
  83. Kawabe I (1978) Calculation of oxygen isotope fractionation in quartz-water system with special reference to the bond temperature fractionation. Geochim Cosmochim Acta 42:613–621CrossRefGoogle Scholar
  84. Kirshenbaum I (1951) Physical properties and analyses of heavy water. McGraw-Hill, New YorkGoogle Scholar
  85. Kobayakawa HY, Horibe Y (1960) Dtuterium abundance of natural waters. Geochim Cosmochim Acta 20:273–283CrossRefGoogle Scholar
  86. Kolodny Y, Epstein S (1976) Stable isotope geochemistry of deep sea cherts. Geochim Cosmochim Acta 40:1195–1209CrossRefGoogle Scholar
  87. Lawrence JR, Taylor HP (1971) Deuterium and oxygen-correlation clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003CrossRefGoogle Scholar
  88. Lawrence JR, Taylor HP (1972) Oxygen and hydrogen correlation clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003CrossRefGoogle Scholar
  89. Le Pichon X, Francheteau XJ, Bonnin J (1973) Plate tectonics. Elsevier, AmsterdamGoogle Scholar
  90. Lloyd RM (1966) Oxygen isotope enrichment of sea water by evaporation. Geochim Cosmochim Acta 30:801–814CrossRefGoogle Scholar
  91. Lloyd RM (1968) Oxygen isotope behaviour in the sulphate-water system. J Geophys Res 73:6099–6110CrossRefGoogle Scholar
  92. Mason B (1966) Principles of geochemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  93. McKenzie WF, Truesdell AH (1977) Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved fate and water from hot springs and shallow drill-holes. Geothermics 5:51–61CrossRefGoogle Scholar
  94. Meniaylov IA, Vetshtein VE, Nikitina LP, Artemchuk VG (1981) D/H and 18O/16O ratios in magmatic water and gas of the Tolbachik great fracture eruption, Kamchatka. Dokl. AN SSSR, pp 258–472Google Scholar
  95. Merlivat L (1970) D’etude quantitative de bilans de lacs á l’aide des concentrations en deuterium et oxygen-18 dans lean. In: IAEA (ed) Isotope hydrol: proceedingsof a symp, IAEA, Vienna, pp 89–107Google Scholar
  96. Miller AR, Densmore CD, Degens TE et al (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30:341–359CrossRefGoogle Scholar
  97. Mizutani Y (1972) Isotopic composition and undeground temperature of the Otake geothermal water, Kyushu, Japan. Geochim J 6:67–73CrossRefGoogle Scholar
  98. Mizutani Y, Hamasuna T (1972) Origin of the Shimogamo geothermal brine. Izu Volcan Soc Japan Bull 17:123–134Google Scholar
  99. Mizutani Y, Rafter TA (1969) Oxygen isotope composition of sulphates, 3 Oxygen isotopic fractionation in the bisulfate ion-water system. N Z J Sci 12:54–59Google Scholar
  100. Moody DJ (1978) Geography and geology of gigantic petroleum fields. In: IAEA (ed) Petroleum and global tectonics. Nedra, Moskva, 112–160 (trans: from English)Google Scholar
  101. Mook WG (1970) Stable carbon and oxygen isotopes in natural waters in the Netherlands. In: Isotope hydrology: proceedings of a symp. IAEA, Vienna, pp 163–189Google Scholar
  102. Nikanorov AM, Yakubovsky AV, Shalaev LN et al (1980) On isotope and chemical anomaly of fresh water in oil fields. In: IAEA (ed) 8th vses symp on stable isotop geochim, Moskva, pp 224–226Google Scholar
  103. Ohmoto H, Rye RO (1974) Oxygen and hydrogen isotope composition of fluid inclusions in the Kuroko deposits, Japan. Econ Geol 69:947–953CrossRefGoogle Scholar
  104. O’Neil JR, Kharaka JK (1976) Hydrogen and oxygen isotope exchange reactions between clay minerals and water. Geochim Cosmochim Acta 40:214–245Google Scholar
  105. Panichi C, Celati R, Noto P, et al (1974) Oxygen and hydrogen isotope studies of the Larderello (Italy) geothermal system. In: IAEA (ed) Isotope techniques in droundwater hydrology: proc symp. IAEA, Vienna, vol 2, pp 3–28Google Scholar
  106. Panichi C, Ferrara GC, Gonfiantini R (1977) Isotope geothermometry in the Larderello geothermal field. Geothermics 5:81–88CrossRefGoogle Scholar
  107. Panichi C, Nuti S, Noto P (1979) Use of isotopic geothermometers in the Larderello geothermal field. In: IAEA (ed) Isotope hydrology: proceedings of a symposium, IAEA, Vienna, vol 2, pp 613–629Google Scholar
  108. Pelmegov SV, Munaev Ye, Bondarenko GN (1978) Isotopic and geochemical studies of groundwater from a boundary of an artesian basin. Sov Geol 4:119–125Google Scholar
  109. Petrov VP (1975) Stories about white clay. Nedra, MoscowGoogle Scholar
  110. Petrov VP (1975) Stories about white clay. Nedra, MoscowGoogle Scholar
  111. Pinneker EV (ed) (1974) Role of isotope investigation at groundwater resources exploration in Eastern Siberia. Groundwaters of Irkutsk Region. Nedra, Leningrad, pp 14–31Google Scholar
  112. Pinneker EV (ed) (1975) Formation of modern hydrotherms in the dead volcanic regions (in the light of isotopic data). Geothermal process in the regions of active structural magmatism. Nauka, Moskva, pp 38–43Google Scholar
  113. Pinneker EV, Vetshtein VE, Dzyuba AA et al (1973) Oxygen-18 content in Siberian platform brines. In: Pinneker EV (ed) Outlines on hydrogeology of Siberia. Nauka, Novosibirsk, pp 86–92Google Scholar
  114. Polyakov VA, Seletsky YuB, Yakubovsky AV et al (1974) Deuterium in the Naftusya’ mineral water. Annals VSEGINGEO 59:80–87Google Scholar
  115. Polyakov VA, Kolesnikova LN (1978) Regional spesifics in formation of isotopic content of precipitation. In: GEOCHI (ed) 7th Vses Symp Stab Isotop Geokhim, Moskva, pp 148–149Google Scholar
  116. Rabinovich IB (1968) Isotopic effects in physical and chemical properties of solutions. Nauka, MoskvaGoogle Scholar
  117. Rafter TA, Mizutani Y (1967) Oxygen isotope composition of sulfates: 2. Preliminary results of oxygen isotope variation in sulphates and relationship to their environment and to their 34S values. N Z J Sci 10:815–840Google Scholar
  118. Rankama K (1954) Isotope geology. Pergamon, LondonGoogle Scholar
  119. Rankama K (1963) Progress in isotope geology. Intersci Publ, NewYorkGoogle Scholar
  120. Redfield AC, Friedman I (1964) Factors affecting the distribution of deuterium in the ocean. Proc Symp Mar Geochim, pp 149–168Google Scholar
  121. Sakai H, Matsubaya O (1974) Isotope geochemistry of the thermal waters of Japan and its bearing on the Kuroko ore solutions. Econ Geol 69:674–991CrossRefGoogle Scholar
  122. Sakai H, Matsubaya O (1977) Stable isotope studies of Japanese geothermal systems. Geotermics 5:97–123CrossRefGoogle Scholar
  123. Salati E, Matsui E, Leal JM et al (1980) Utilization of natural isotopes in the study of salination of the water in the Pejeu River valley, Northeast Brazil. In: IAEA (ed) Arid-zone hydrology: investigations with isotope techniques: proc. adv. group neet. IAEA, Vienna, pp 133–151Google Scholar
  124. Savin SM, Epstein S (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:25–42Google Scholar
  125. Savin SM, Epstein S (1970b) The oxygen isotopic composition of coarse grained sedimentary rocks and minerals. Geochim Cosmochim Acta 34:323–329Google Scholar
  126. Seletsky Yu B, Polyakov VA, Yakubovsky AV, Isaev NV (1973) Deuterium and oxygen-18 in groundwaters. Nedra, MoskvaGoogle Scholar
  127. Seletsky Yu B, Polyakov VA, Yakubovsky AV, Isaev NV (1974) Preliminary results of deuterium content in certain types of North Caucasus groundwaters. Annals VSEGINGEO 59:70–79Google Scholar
  128. Sergeev EM, Ilyinskaya GG, Rekshinskaya G (1963) On the distribution of clay minerals for their engineering geological study. Vestnic MGU. Ser Geol 4:3–9Google Scholar
  129. Shackleton MJ, Opdyke ND (1973) Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core v.28-v.238: oxygen isotope temperatures and ice volumes on a 109 years and 106 year scale. Quatern Res 3:39–55CrossRefGoogle Scholar
  130. Sheppard SMF, Nielsen RL, Taylor HP (1969) Oxygen and hydrogen isotope ratios in minerals from porphyry copper deposits. Econ Geol 64:755–777CrossRefGoogle Scholar
  131. Sheppard SMF, Nielsen RL, Taylor HP (1971) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ Geol 66:515–542CrossRefGoogle Scholar
  132. Smirnov SI (1971) Origin of groundwater salinity in sedimentary basins. Nedra, MoskvaGoogle Scholar
  133. Sobotovich EV, Bondarenko GN, Vetshtein VE et al (1977) Isotope and geochemical estimates of a degree of surface and gtound water interconnection. Naukova Dumka, KievGoogle Scholar
  134. Sofer Z, Gat JR (1975) Activities and concentration of oxygen-18 in concentrated aqueous salt solutions: analytical and geophysical implications. Earth Planet Sci Lett 26:179–186CrossRefGoogle Scholar
  135. Sokolovsky LG, Polyakov VA, Golubkova EV (2007) Light isotopes of waters of the Asdov-Kuban artesian basin: conditions of formation and balneological significance. Prosp Prot Miner Resour 5:44–47Google Scholar
  136. Sonntag C, Klitzsch E, Löhnert EP et al (1979) Paleoclimatic information from deuterium and oxygen-18 in carbon-14-dated North Saharian groundwater. In: IAEA (ed) Isotope Hydrology, 1978: proceedings of a simposium. IAEA, Vienna, vol 2, pp 569–580Google Scholar
  137. Soyfer VN, Brezgunov VS, Vlasova LS (1967) Role of hydrogen stable isotopes in study of geological processes. Geokhimiya 5:599–606Google Scholar
  138. Sultanov BI (1961) Deep condensed waters of gas-condensates and their formation conditions. Dokl AH AzSSR 17:1165–1166Google Scholar
  139. Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240CrossRefGoogle Scholar
  140. Tarasov MG (1978) The origin and formation of groundwaters in Near Caucasus Mesozoic sediments by means of hydrogen and oxygen isotopes. Nat Geol Geophys Izuch Zemn Kory, Minsk, pp 62–68Google Scholar
  141. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition. Econ Geol 69:213–298Google Scholar
  142. Taylor HP (1978) Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci Lett 38:177–210CrossRefGoogle Scholar
  143. Tkachuk VG, Vetshtein VE, Malyuk GA, Altshuler PG. (1975) Hydrogen and oxygen isotopes of the Pripyat depression brines and possibilities of their use in oil and gas exploration. Geokhimiya 7:999–1006Google Scholar
  144. Tyminsky BG, Sultankhodzhaev AN, Rozanov IM (1966) Paleohydrological estimations for the waters of the Tashkent artesian basin Uzbek Geol J 3:64–68Google Scholar
  145. Urey HC (1957) Boundary conditions for theories of the origin of the solar system. Physics and Chemistry of the Earth 2:46–76CrossRefGoogle Scholar
  146. Urey HC, Lowenstam HA, Epstein S et al (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous England, Denmark, and South-Eastern United States. Bul Geol So Am 62:399–416.CrossRefGoogle Scholar
  147. Vasilchuk YuK, Kotlyakov VM (2000) Principles of Isotopic Geocriology and Glaciology. Izd MGU, MoscowGoogle Scholar
  148. Verhoogen J, Turner EJ, Weiss LS et al (1970) The Earth: an introduction to physical geology, vol 2. Holt, Rinehart and Winston, New YorkGoogle Scholar
  149. Vetshein VE, Baskov EA, Klimov GI et al (1971) New data on oxygen-18 content in volcanic thermal and mineral waters from Kurili Islands, Kamchatka, and Baykal region. Sov Geol 9:98–108Google Scholar
  150. Vetshein VE, Malyuk G, Lapshin FV (1972) Oxygen and hydrogen isotopic composition of mineral waters in Ukrainian Carpathy as their genesis criterion. Dop. AN URSR 12:1062–1066Google Scholar
  151. Vetshein VE, Gutsalo LK, Malyuk GA, Miroshnichenko AG (1973) On the origin of formation waters in the Dnepr-Donetsk gas and oil-bearing sedimentary basin by oxygen and hydrogen isotopic composition. Geokhimiya 3:327–338Google Scholar
  152. Vlasova LS, Brezgunov VS (1978) The distribution of hydrogen and oxygen isotopic composition in natural brines by model calculations. In: Ferronsky VI (ed.) Isotope study of natural waters. Nauka, Moskva, pp 119–139Google Scholar
  153. Voytov GI, Gureev EV, Erokhin BK et al (1976) Hydrogen isotopic composition of thermal waters from South Belozersk iron ore deposits. Dokl. AN SSSR 231:1226–1229Google Scholar
  154. White DE (1965) Saline waters of sedimentary rocks. In: Young A, Galley JE (eds) Fluids in subsurface environments. Am Assoc Petrol.Geol 4:343–366Google Scholar
  155. White DE (1974) Diverse origins of hydrothermal ore fluids. Econ Geol 69:954–973CrossRefGoogle Scholar
  156. White DE, Craig H, Begemann F (1963) Sammary of the geology and isotope geochemistry of Steamboat springs, Nevada. In: Tongiorgi E (ed) Nuclear geology on geothermal areas, Spoleto. Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, pp 9–16Google Scholar
  157. Wilson AT, Grinsted MJ (1977) The D/H ratio of cellulose as biochemical thermometer (A comment on “Climatic implication of D/H ratio of hydrogen in C-H groups in tree cellulose” by S Epstein and CJ Yapp). Earth Planet Sci Lett 36:246–248CrossRefGoogle Scholar
  158. Yakubovsky AV, Isaev NV, Polyakov VA, Tereshchenko VA (1978) On the formation of low-mineralized groundwater with high level of deuterium and oxygen-18 content. In: GEOCHI (ed) 7th Vses Sym. Stab Isotop Geokhim. GEOHI, Moskva, pp 202–203Google Scholar
  159. Yapp CJ, Epstein S (1977) Climatic implication of D/H ratio of meteoric waters over North America (9500-22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen. Earth Planet Sci Lett 34:33–350CrossRefGoogle Scholar
  160. Yeh HW, Epstein S (1980) D/H ratios and late-stage dehydration of shales during burial. Geochim Cosmochim Acta 44:341–352CrossRefGoogle Scholar
  161. Yezhova MP, Polyakov VA, Tkachenko AE et al (1996) Palaeowaters of North Estonia and their influence on changes in the resourses and the quality of fresh groundwaters of large coastal water supplies. Geologiya 19:37–40Google Scholar
  162. Yurtsever Y, Gat JR (1981) Stable isotopes in atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology. IAEA, Vienna, pp 103–142Google Scholar
  163. Zaitsev IK (1967) Hydrochemical and hydrothermal zoning of the artesian basins of the USSR in connection with underground evaporation hypothesis criticism. In: VSEGINGEO (ed) 5th Meeting of Siberia and Far East, Irkutsk-Tyumen, pp 39–40Google Scholar
  164. Zimmerman U (1979) Determination by stable isotopes of underground inflow and outflow and evaporation of young artificial groundwater lakes. In: IAEA (ed) Isotopes in Lake Studies: proc adv group meet. IAEA, Vienna, pp 87–94Google Scholar
  165. Zimmerman U, Ehhalt D, Münnich KO (1967) Soil water movement and evapotranspiration: changes in the isotopic composition of the water. In: IAEA (ed) Isotopes in hydrology: proceedings of a symposium. IAEA, Vienna, pp 567–584Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Water Problems Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations