Advertisement

Radiogenic Isotopes in Dating of Natural Waters and Sediments

  • V. I. FerronskyEmail author
Chapter
  • 1.1k Downloads
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The production and distribution of radiogenic (natural) radioisotopes and the distribution and separation of uranium, thorium and radium isotopes (238U, 235U, 234U, 232Th, 230Th, 238Th, 224Ra, and 226Ra) in natural waters are discussed in this chapter. Methods of dating surface waters, groundwaters, closed reservoirs and bottom sediments are analysed. The values of the radiogenic isotopes in waters are practically independent of chemical factors. It is mainly determined by the uranium distribution in rocks of a water-bearing complex. Therefore, the uranium isotope ratio serves as some kind of natural indicator of water of a certain water-bearing complex. This fact makes it possible to determine patterns of natural water filtration; to distinguish the rock of the water-bearing complex, to construct models of groundwater circulation, to establish the mixing proportions of waters of different complexes and to examine the interrelations between waters of different complexes.

Keywords

Radon Concentration Uranium Deposit Uranium Content Water Water Uranium Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alekseev FA, Bondarev LG, Zverev VL, Spiridonov AI (1973) Influence of precipitation radioactivity on isotopic composition of uranium in the Issyk-Kul Lake in connection with the age determination. Geokhimiya 5:787–780Google Scholar
  2. Andreev PF, Rogozina EM, Rogozin YuM (1960) Extraction of uranium from rocks by ultrasonic action. J Phys Chem 34:2429–2430Google Scholar
  3. Baturin GN (1968) Relationship in forms of uranium migration in some rivers of the USSR territory. Dokl AN SSSR 17:698–701Google Scholar
  4. Baturin GN, Kochenov AV (1969) Uranium migration in rivers and its residence time in waters of oceans, rivers and lakes. Geokhimiya 6:715–723Google Scholar
  5. Baturin GN, Kochenov AV, Kovaleva SA (1966) Some peculiarities of uranium distribution in the Black Seaf water. Dokl AN SSSR 166:698–700Google Scholar
  6. Bath AH, Edmunds WM, Andrews JN (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Isotope hydrology 1978: proceedings of a symposium, IAEA, Vienna, pp 545–566Google Scholar
  7. Bernat M, Goldberg ED (1969) Thorium isotopes in the marine environment. Earth Planet Sci Lett. 5:308–312CrossRefGoogle Scholar
  8. Bhat SG, Krishnaswamy S, Lal D, Moore WS (1969) 234Th/238U ratios in the ocean. Earth Planet Sci Lett 5:483–491CrossRefGoogle Scholar
  9. Blanchard RL, Oakes D (1970) Relationship between uranium and radium in coastal marine shells and their environment. J Geophys Res 70:2911–2921CrossRefGoogle Scholar
  10. Broecker WS, Kaufman A (1970) Near-surface and near-bottom radon results for the 1969 North Pacific Geosecs Station. J Geophys Res 75:7679–7681CrossRefGoogle Scholar
  11. Broecker WS, Li YH, Cromwell J (1967) Radium-226 and radon-222 concentration in Atlantic and Pacific oceans. Science 158:1307–1310CrossRefGoogle Scholar
  12. Broecker WS, Goddard J, Sarmiento L (1976) The distribution of 226Ra in Atlantic ocean. Earth Planet Sci Lett 32:220–238CrossRefGoogle Scholar
  13. Cerrai E, Lonati R, Gazzarini F, Tongeorgi E (1965) Il metodo ionio-uranio per la determinazione della’eta dei minerali vulcanici recenti. Rend Della Soc Mineralog Italia 21:109–115Google Scholar
  14. Chalov PI (1959) Isotope ratio 234U/238U in some secondary minerals. Gokhimiya 2:165–170Google Scholar
  15. Chalov PI (1968) Dating by non-equilibrium uranium. Ilim, FrunzeGoogle Scholar
  16. Chalov PI, Tuzova TV, Musin YaA (1964) Isotope ratio of 234U/238U in natural waters and its application in nuclear geochronology. Geokhimiya 5:404–413Google Scholar
  17. Chalov PI, Merkulova KI, Tuzova TV (1966a) Absolute age of the Aral Sea determined by nonequilibrium uranium. Dokl AN SSSR 166:89–91Google Scholar
  18. Chalov PI, Merkulova KI, Tuzova TV (1966b) Ratio of 234U/238U in water and bottom sediments of the Aral Sea and its absolute age. Geokhimiya 12:1431–1438Google Scholar
  19. Chalov PI, Svetlichnaya NA, Tuzova TV (1970) The results of absolute age determination of Balkhash Lake by nonequilibrium uranium. Dokl AN SSSR 195:190–192Google Scholar
  20. Chalov PI, Svetlichnaya NA, Tuzova TV (1973) Application of nonequilibrium uranium in establishing relationship between continental reservoirs in the past. Geokhimiya 6:897–902Google Scholar
  21. Cherdyntsve VV (1955) Isotopic composition of radioelements in natural objects in connection with their geochronology. In: Annals of the third commission on absolute determination of geologic age. Nauka, Moskva, pp 175–233Google Scholar
  22. Cherdyntsve VV (1969) Uranium-234. Atomizdat, MoscowGoogle Scholar
  23. Cherdyntsve VV (1973) Nuclear vulcanology. Nauka, MoscowGoogle Scholar
  24. Cherdyntsev VV, Kazachevsky IV, Kuzmina EA (1963) Isotopic composition of uranium and thorium in zone of hypergeneze. Geokhimiya 3:254–265Google Scholar
  25. Cherdyntsev VV, Kazachevsky IV, Kuzmina EA (1965) The age of Pleistocene carbonate formations by uranium isotopes. Geokhimiya 9:1085–1092Google Scholar
  26. Cherdyntsev VV, Kazachevsky IV, Kislitsyna GI et al (1966) Nonequilibrium uranium in carbonate deposits and their age. Geokhimiya 2:1939–1946Google Scholar
  27. Cherdyntsev VV, Kazachevsky IV, Kuzmina EA et al (1967) Absolute geochronology of Cenozoic deposits. Proc Acad Sci USSR Ser Geol 1:11–20Google Scholar
  28. Cherdyntsev VV, Kuptsov VM, Kuzmina EA, Zverev VL (1968) Radioisotopes and protactinium age of neovulcanic rocks of Caucasus. Geokhimiya 1:77–85Google Scholar
  29. Chirkov AM (1971) 222Rn content in Kamchatka’s hydrothems. Dokl AN SSSR 199:202–203Google Scholar
  30. Chung YC (1974a) Transient excess-radon profile in Pacific bottom water. Earth Planet Sci Lett 21:295–300CrossRefGoogle Scholar
  31. Chung YC (1974b) Radium-226 and Ra-Ba relationships in Antarctic and Pacific waters. Earth Planet Sci Lett 23:125–135CrossRefGoogle Scholar
  32. Chung YC (1976) A deep 226Ra maximum in the northeast Pacific. Earth Planet Sci Lett 32:249–257CrossRefGoogle Scholar
  33. Chung YC, Craig H, Ku TL, Goddard J, Broecker WS (1974) Radium226 measurements from three Geosecs intercalibration stations. Earth Planet Sci Lett 23:116–124CrossRefGoogle Scholar
  34. Crozaz G (1967) Datation des glaciers par le plomb-210. In: Radioactive dating and methods of low-level count: proc symp. IAEA, Vienna, pp 385–392Google Scholar
  35. Ferronsky VI, Polyakov VA (2012) Isotopes in the Earth's hydrosphere. Springer, DordrechtCrossRefGoogle Scholar
  36. Goldberg E (1963) Geochronology with Lead-210. In: Radioactive dating: pros symp. IAEA, Vienna, pp 121–131Google Scholar
  37. Gorbushina LV, Salmenkova NA, Tyminsky VG (1967) The ages and mixture proportions of mineral waters in the Tashkent artesian basin. Izv Vissh Uch Zaved Ser Geol Razv 2:92–95Google Scholar
  38. Gorbushina LV, Gratsiansky VG, Tyminsky VG (1968) The experience with ultrasound use for recovery of thoron and actinon from solutions. Radiokhimiya 10:495–496Google Scholar
  39. Gorbushina LV, Tyminsky VG, Spiridonov AI (1972) On the mechanism of radiohydrogeological anomalies appearance in seismic regions and their significance in earthquake prediction. Sovetskaya Geologiya 1:153–156Google Scholar
  40. Grashchenko SM, Nikolaev DS, Kolyadin LV et al (1960) Radium content in the Black Sea waters. Dokl AN SSSR 132:1171–1172Google Scholar
  41. Higashi S (1959) Estimation of microgram amount of Th in sea water. J Oceanogr Soc Jpn 15:64Google Scholar
  42. Hoang CT, Servant J (1972) Le flux de radon de la mer. CR Acad Sci 274(24):1321–1349Google Scholar
  43. Joshi LV, Mahadevan TN (1967) Radiochemical determination of lead-210 concentrations in ground level air in India. Nucl Radiat Chem Pros 1:519–523Google Scholar
  44. Junge CE (1963) Air chemistry and radioactivity. Academic, New YorkGoogle Scholar
  45. Kaufman A (1969) The 232Th concentration on surface ocean water. Geochim Cosmochim Acta 33:717–724CrossRefGoogle Scholar
  46. Kaufman A, Broeker W (1965) Comparison of 230Th and 14C ages for carbonate materials from lakes Lachontan and Bonneville. J Geophys Res 70:4039–4054CrossRefGoogle Scholar
  47. Kaufman MI, Rydell HS, Osmond JK (1969) 234U/238U disequilibrium as an air to hydrologic study of the Floridian aquifer. J Hydrol 9:374–386CrossRefGoogle Scholar
  48. Kaufman A, Trier R, Broecker WS, Feely HW (1973) Distribution of 228Ra in the world ocean. J Geophys Res 78:8827–8848Google Scholar
  49. Khristianov VK, Korchuganov BN (1971) Radon content in the Upper Volga River waters. Geokhimiya 4:492–496Google Scholar
  50. Kigoshi K (1973) Uranium 238/234 disequilibrium and age of underground water. Working paper of the IAEA panel meet, IAEA, ViennaGoogle Scholar
  51. Knauss KG, Ku TL, Moore WS (1978) Radium and thorium isotopes in the surface waters of the east Pacific and coastal Southern California. Earth Planet Sci Lett 39:235–249CrossRefGoogle Scholar
  52. Kochenov AV, Baturin PN (1967) Uranium distribution in the Aral Sea sediments. Oceanology 7:623–627Google Scholar
  53. Ku TL, Lin MC (1976) 226Ra distribution in the Atlantic ocean. Earth Planet Sci Lett 32:236–248CrossRefGoogle Scholar
  54. Ku TL, Knauss KG, Mathieu GG (1977) Uranium in open ocean: concentration and isotopic composition. Deep-sea Res 24:1005–1007CrossRefGoogle Scholar
  55. Kuptsov VM, Cherdyntsev VV (1968) Radon and thoron in fumarole gases. Dokl AN SSSR 2:436–438Google Scholar
  56. Kuptsov VM, Cherdyntsev VV (1969) Uranium and thorium decay products in the USSR active volcanism. Geokhimiya 6:643–658Google Scholar
  57. Kuznetsov YuV (1962) On the forms of ionium and thorium in the oceans. Geokhimiya 2:177–184Google Scholar
  58. Kuznetsov YuV, Elizarova AN, Frenklikh MS (1966a) Study of sedimentation in oceanic waters by 231P and 230Th isotopes. Radiochemistry 8:459–468Google Scholar
  59. Kuznetsov YuV, Elizarova AN, Frenklikh MS (1966b) Protactinium and thorium content in oceanic waters. Radiochemistry 8:455–458Google Scholar
  60. Kuznetsov Yu, Legin VK, Lisitsin AP et al (1967) Radioactivity of oceanic suspension, 2. Uranium in oceanic suspension. Radiochemistry 9:498–499Google Scholar
  61. Li YH, Ku TL, Mathieu GG, Wolgemuth K (1973) Barium in the Antarctic ocean and implications regarding the marine geochemistry of Ba and 226Ra. Earth Planet Sci Lett 19:352–358CrossRefGoogle Scholar
  62. Li YH, Mathieu GG, Biscye P, Simpson HJ (1977) The flux of 226Ra from estuarine and continental shell sediments. Earth Planet Sci Lett 37:237–241CrossRefGoogle Scholar
  63. Moore WS (1969) Measurement of 228Ra and 228Th in the sea water. J Geophys Res 74:694–704CrossRefGoogle Scholar
  64. Nikolaev SD, Lazarev KF, Grashchenko SM (1961) Thorium isotopes content in the Asov Sea waters. Dokl AN SSSR 138:674–676Google Scholar
  65. Nikolaev SD, Lazarev KF, Korn OP, Drozhin VM (1966) Geochemical balance of radioactive elements in the Black sea and Asov sea basins: 1. Uranium balance. Radiochemiya 11:688–698Google Scholar
  66. Nozaki Y, Tsunogai S (1976) 226Ra, 210Pb, and 210Po distribution in the western North Pacific. Earth Planet Sci Lett 32:313–321CrossRefGoogle Scholar
  67. Nozaki Y, Thompson J, Turekian KK (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific ocean. Earth Planet Sci Lett 32:304–312CrossRefGoogle Scholar
  68. Osmond JK, Rydell HS, Kaufman MI (1968) Uranium disequilibrium in groundwater: an isotope delution approach in hydrologic investigations. Science 162:997–999CrossRefGoogle Scholar
  69. Pearson DH, Cambray RS, Spiser GS (1966) Lead-210 and polonium-210 in the atmosphere. Tellus 18:427–433CrossRefGoogle Scholar
  70. Rona D, Akers LK, Noakes JE, Supernew I (1965) Geochronology in the Gulf of Mexico. Prog Oceanogr 3:289–295Google Scholar
  71. Sackett WM (1963) Geochemistry of ocean water. Trans Am Geophys Union 44:483–485Google Scholar
  72. Sackett WM, Mo R, Sapaldin RF, Exnet ME (1973) A revolution of the marine geochemistry of uranium. In: Radioactive contamination of the marine environment: proc symp, IAEA, Vienna, pp 757–769Google Scholar
  73. Sarmiento JL, Feely HW (1976) The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth Planet Sci Lett 32:357–370CrossRefGoogle Scholar
  74. Shannou LV, Cherry RD, Orren MJ (1970) Polonium-210 and lead-210 in the marine environment cycles. Geochim Cosmochim Acta 34:701–711CrossRefGoogle Scholar
  75. Shukolyukov YuA (1970) Uranium nuclear fssion in nature. Atomizdat, MoskvaGoogle Scholar
  76. Shukolyukov YuA, Komarov AN (1966) Possibilities of paleothermometry by uranium fission tracks. Izv AN SSSR Ser Geol 9:137–141Google Scholar
  77. Spiridonov AI, Tyminsky VG (1971) On 234U/238U ratio variation in groundwater. Izv AN SSSR Ser Phys Zem 3:91–93Google Scholar
  78. Starik IE (1961) Nuclear geochronology. Izd AN SSSR. Moscow-LeningradGoogle Scholar
  79. Starik IE, Kolyadin LB (1957) On the conditions of uranium existance in oceanic water. Geokhimiya 3:204–213Google Scholar
  80. Starik IE, Melikova OS (1957) Emanation ability of minerals. Trudy Radievogo Inst 5:184–202Google Scholar
  81. Starik IE, Lazarev KF, Nikolaev DS et al (1959) Thorium isotope concentration in the Black Sea waters. Dokl AN SSSR 129:919–921Google Scholar
  82. Styro BI, Shpirkauskayte IK, Kuptsov VM (1970) 238U, 232Th and 239Pu altitude distribution in atmospheric precipitation. At Energ 29:135–136CrossRefGoogle Scholar
  83. Sultankhodzhaev AN, Tyminsky GV, Taneev RN (1970) Non-equilibrium uranium in groundwaters of the Tashkent artesian basin. Uzbek Geol J 3:75–77Google Scholar
  84. Syromyatnikov NG (1961) Uranium, thorium and radium isotope migration and interpretation of the radioactive anomalies. Izd AN KazSSR, Alma-AtaGoogle Scholar
  85. Thurber DL (1963) Natural variations in the ratio 234U/238U. In: Radioactive dating: proceedings of a symposium, IAEA, Vienna, pp 113–120Google Scholar
  86. Thurber DL (1965) The concentration of some natural radioelements in the waters of the Great basin. Bull Volcanol 28:195–201CrossRefGoogle Scholar
  87. Titaeva NA (1966) On the possibilities of orogenic sediments absolute age determination by ionium method. Geokhimiya 10:1183–1192Google Scholar
  88. Titaeva NA, Filonov VA, Ovchenkov VYa et al (1973) Uranium and thorium isotopes behaviour in crystalline rocks-surface water system for cold humid climate conditions. Geokhimiya 10:1522–1528Google Scholar
  89. Tokarev AV, Shcherbakov AV (1956) Radiohydrogeology. Gosgeoltekhizdat, MoskvaGoogle Scholar
  90. Tsunogai Sh, Nozaki Y (1971) Lead-210 and plutonium-210 in the surface water of the Pacific. Geochim J 5:165–173CrossRefGoogle Scholar
  91. Vinogradov AP (ed) (1963) The main features of uranium geochemistry. Izd AN SSSR, MoskvaGoogle Scholar
  92. Vinogradov AP (1967) Introduction to ocean geochemistry. Nauka, MoskvaGoogle Scholar
  93. Voytkevich GV (1961) Radiogeology problems. Gosgeoltekhizdat, MoskvaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Water Problems Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations