Skip to main content

Cosmogenic Radioisotopes for Study of the Genesis and Dynamics of Water

  • Chapter
  • First Online:
Nuclear Geophysics

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1256 Accesses

Abstract

The Earth’s atmosphere is penetrated by a continuous flux of charged particles, consisting of protons and nuclei of various elements of cosmic origin. Consequently, a great variety of radioisotopes, referred to as cosmogenic, are produced due to the interaction of these particles with the atomic nuclei of elements that constitute the atmosphere. Transported by air masses, radioisotopes are abundant over the whole gaseous sphere of the Earth. Being mixed with atmospheric moisture, a proportion falls over the Earth’s surface, to enter the hydrological cycle as components of surface waters, soil-ground moisture and groundwaters. Another proportion becomes a component of ocean and inland basin waters through exchange at the surface of water reservoirs. Finally, the Earth’s biosphere plays an active role in exchange processes, which are of great importance for some cosmogenic isotopes. Cosmic dust is another source of cosmogenic isotopes, as are meteorites that are continually falling onto the Earth’s surface. Being in cosmic space these meteorites have been subjected to a bombardment of cosmic radiation. Nuclear reactions accompanying the process produce many radioisotopes. The origin and distribution of cosmogenic radioisotopes, global circulation of tritium, radiocarbon and other cosmogenic radionuclides are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aegerter SK, Loosli HH, Oeschger H (1967) Variation in the production of cosmogenic radionuclides. In: Radioactive dating and methods of low-level counting: proceed symp, IAEA, Vienna, pp 49–55

    Google Scholar 

  • Afanasenko EA, Morkovkina IK, Romanov VV (1973) Age of groundwater in the Tas-Khayat Ridge and Selennyakh depression. Bull Moscow Univ, Ser Geol 5:105–109

    Google Scholar 

  • Afanasyev AP (1960) Water balance of Baykal Lake. Proc Baykal Limnol Stn 18:85–95

    Google Scholar 

  • Allison GB, Hughes MW (1974) Environmental tritium in the unsaturated zone: estimation of recharge to an unconfined aquifer. In: Isotope techniques in groundwater hydrology: proceedings of a symposium, IAEA, Vienna, 11–15 March 1974, pp 57–70

    Google Scholar 

  • Andersen LJ, Sevel T (1974) Six years’ environmental tritium profiles in the unsaturated and saturated zones. In: Isotope techniques in groundwater hydrology: proceeding symp, vol 1, IAEA, Vienna, pp 3–18

    Google Scholar 

  • Andrews JN, Kay RLE (1982) Natural production of tritium in permeable rocks. Nature 298:361–363

    Google Scholar 

  • Appa Rao MVK (1962) The 3He/(3He + 4He) ratio in primary cosmic radiation. J Geophys Res 67:1289–1392

    Google Scholar 

  • Atakan YW, Roether W, Münnich KO, Matthess G (1974) The sandhausen shallow groundwater tritium experiment. In: Isotope techniques in groundwater hydrology: proceedings of a symposium, IAEA, Vienna, 11–15 March 1974, vol 1, pp 21–43

    Google Scholar 

  • Bainbridge AE (1963) Tritium in the Northern Pacific surface water. J Geophys Res 68:3785–3789

    Google Scholar 

  • Bartels OG (1972) An estimate of volcanic contributions to the atmosphere and volcanic gases and sublimates as the source of the radioisotopes 10B, 35S, 32P and 22Na. Heal Phys 22:387–392

    Google Scholar 

  • Begemann F (1959) Neubestimmung der natürlichen irdischen Tritiumzerfallstrate und die Frage der Herkunft des natürlichen Tritium. Naturforsch 4a:334–342

    Google Scholar 

  • Begemann F, Friedman I (1968) Isotopic composition of atmospheric hydrogen. J Geophys Res 73:1139–1147

    Google Scholar 

  • Begemann F, Libby WF (1957) Continental water balance, groundwater inventory and storage times, surface ocean, mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim Cosmochim Acta 12:277–296

    Google Scholar 

  • Berger R (1979) Artificial radiocarbon in the stratosphere. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California, Berkeley, pp 309–321

    Google Scholar 

  • Bhaudari W, Fruchter J, Evans J (1969) Rates of production of 22Na and 28Mg in the atmosphere by cosmic radiation. Earth Planet Sci Lett 7:89–92

    Google Scholar 

  • Bien GS, Suess HE (1967) Transfer and exchange of 14C between the atmosphere and the surface water of the Pacific Ocean. In: Radiocarbon Dating and Methods of Low-Level Counting: proc. a symp, IAEA, Vienna, pp 105–115

    Google Scholar 

  • Bien GS, Rakestrow P, Oldenbourg M, Suess HE (1963) Investigations in marine environments using radioisotopes produced by cosmic rays. In: Radiocarbon dating: proc. symp, IAEA, Vienna, pp 159–174

    Google Scholar 

  • Bochaler P, Eberhardt P, Geiss J (1971) Tritium in lunar materials. Proc. 2nd Lunar Sci Conf 2:1803–1812

    Google Scholar 

  • Boella GC, Dilworth M, Panetti M, Scarsi L (1968) The atmospheric and leakage flux of neutrons produced in the atmosphere by cosmic ray interactions. Earth Planet Sci Lett 4:393–398

    Google Scholar 

  • Bonka H (1979) Production and emission of tritium from nuclear facilities, and the resulting problems. In: Behaviour of tritium in the Environment: proc symp. IAEA, Vienna, pp 105–122

    Google Scholar 

  • Borevsky BV, Polyakov VA, Subbotina LA (1981) Investigation of regularities in leaching through Neocom-Jurassic strata within the depression funnel of the Bryansk water intake well. In: Isotopes in the Hydrosphere, Abstract Symp, IWP RAN, Moskva, pp 52–53

    Google Scholar 

  • Bradley W, Stout G (1970) Vertical distribution of tritium in water vapor in the lower troposphere. Tellus 22:699–706

    Google Scholar 

  • Broder DP, Golubev LI, Ilyasov VM (1979) Tritium distribution in the technology scheme of the New-Voronezh atomic power station. At Energy 47:120–122

    Google Scholar 

  • Broecker WS, Olson EA (1961) Lamont radiocarbon measurements. Radioscarbon 21:199–216

    Google Scholar 

  • Broecker WS, Gerard R, Erwing M, Heezen BC (1960) Natural radiocarbon in the Atlantic ocean. J Geophys Res 65:2903–2909

    Google Scholar 

  • Brown RM (1961) Hydrology of tritium in the Ottawa Valley. Geochim Cosmochim Acta 21:199–216

    Google Scholar 

  • Brown RM (1970) Distribution of hydrogen isotopes in Canada waters. In: Isotope Hydrology: proc. symp, IAEA, Vienna, pp 3–21

    Google Scholar 

  • Brown R, Grummit WE (1956) The determination of tritium in natural waters. Canad J Chem 34:220–226

    Google Scholar 

  • Burchuladze AA, Gedevanishvili DD, Pagava SV, Togonidze GI (1977) Variation of radiocarbon content in the atmosphere for 1950–1975 years measured in Georgian vines. In: Low radioactivity measurements and mpplications. Proceedings of a symposium, High Tatras, 1975, Slovenske Pedagog, Nakland, Bratislava, pp 261–263

    Google Scholar 

  • Burger LL (1979) Distribution and reactions of tritiated hydrogen and methan. In: Behaviour of Tritium in the Environment, proc symp. IAEA, Vienna, pp 47–63

    Google Scholar 

  • Burkhard W, Fröhlich K (1970) Grundlagen hydrologischer tritium untersuchungen und Ihre anwendung bei der bestimmung der herkunft in grubenwasser einer eisenerzgrube. Bergakademie, Freiberg vol 22, pp 15–30

    Google Scholar 

  • Buttlar HV, Libby WF (1955) Natural distribution of cosmic ray produced tritium. J Inorg Nucl Chem 1:75–91

    Google Scholar 

  • Cain WF (1979) 14C in modern American trees. In: Radiocarbon dating. University of California , Berkeley, pp 495–510

    Google Scholar 

  • Combs F, Doda RY (1979) Large-scale distribution of tritium in a commercial product. In: Behaviour of Tritium in the Environment: proc symp, IAEA, Vienna, pp 93–99

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Daly IC, Manchester AV, Gabay IJ, Sax NI (1968) Tritiated moisture in the atmosphere, surrounding a nuclear fuel reprocessing plant. Radiol Heal Data and Repts 11:217–229

    Google Scholar 

  • Damon PE (1970) Climatic versus magnetic perturbation of the atmospheric C-14 reservoir. In: Radiocarbon variations and abcolute chronology, XII nobel symp. Wiley, NY, pp 571–593

    Google Scholar 

  • Deak J (1974) Use of environmental isotopes to investigate the connection between surface waters in the Nagynusad region, Hungary. In: Isotope techniques in groundwater hydrology: proceedings a symp, vol 1, IAEA, Vienna, pp 157–167

    Google Scholar 

  • Dergachev VA (1975) Variations in solar activity and radiocarbon content in the atmosphere. Izv AN SSSR, Ser Phys 32:325–333

    Google Scholar 

  • Dergachev VA (1977) Optimal model for residence time determination of exchange reservoir. In: Low-radioaktivity measurements and applications, proc. symp., IAEA, Vienna, pp 269–277

    Google Scholar 

  • Dergachev VA, Kocharov GE (1977) The ceqular cycles of radiocarbon variation in the Earth atmosphere. In: Low-Radioaktivity Measurements and Applications. Proceedings a symp, IAEA, Vienna, pp 279–286

    Google Scholar 

  • Devis DH (1970) Geohydrologic interpretations of a volcanic island from environmental isotopes. Water Resour Res 6:652–671

    Google Scholar 

  • Dinçer T, Payne BR (1971) An environmental isotope study of the south-western karst region of Turkey. J Hydrol 13:233–258

    Google Scholar 

  • Dockins KO, Bainbridge AE, Houtermans JC, Suess HE (1967) Tritium in the mixed layer of the North Pacific Ocean.In:Radioactive aating and methods of low-level counting, proceedings a symp, IAEA, Venna, pp 120–160

    Google Scholar 

  • Domanitsky AP (1971) Rivers and lakes of the Soviet Union. Gidrometizdat, Leningrad

    Google Scholar 

  • Dubinchuk VT (1979) What is the groundwater age? MOIP, Geol Sect 54:70–79

    Google Scholar 

  • Dudey ND, Malewski RL, Rymas SL (1972) Tritium yield from fast-neutron fission of 235U. Trans Amer Nucl Soc 15:483

    Google Scholar 

  • Ehhalt DN (1966) Tritium and deuterium in the atmospheric hydrogen. Tellus 18:249–255

    Google Scholar 

  • Ehhalt DN (1971) Vertical profiles and transport HTO in the troposphere. J Geophys Res 76:7351–7367

    Google Scholar 

  • Ehhalt DN (1974) The atmospheric cycle of methane. Tellus 26:58–63

    Google Scholar 

  • Eisenbund M, Bennett D, Blanco RE et al (1979) Tritium in the environment-NCRP report No 62. In: Behaviour of tritium in the environment: proceedings symp, IAEA, Vienna, pp 585–587

    Google Scholar 

  • Ekdahl CA, Keeling CD (1973) Atmospheric CO2 in the natural carbon cycle: 1. Quantitative reduction from records at Mouna Loa Observatory and at the South Pole. In: Carbon and biosphere: 24th Brukhaven symp biol, Springfield, pp 51–85

    Google Scholar 

  • Eriksson E (1963) Atmospheric tritium as a tool for the study of certain hydrologic aspects of river basins. Tellus 15:303–308

    Google Scholar 

  • Eriksson E (1965a) Account of the major pulses of tritium and their effects in the atmosphere. Tellus 17:118–130

    Google Scholar 

  • Eriksson E (1965b) Deuterium and oxygen-18 in precipitation and other natural waters. Tellus 17:498–512

    Google Scholar 

  • Evans GV, Otlet RL, Downing RA et al (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In: Isotope Hydrology: proceedings symp, vol 2, IAEA, Vienna, pp 679–706

    Google Scholar 

  • Fairhall AW (1971) Radiocarbon in the Seas, Rep.No RLO-225-T20 -3, US AEC

    Google Scholar 

  • Fairhall AW, Young YA (1970) Radiocarbon in the environment. In: Radionuclides in the environment. Adv Chem Ser.No 9, Am Chem Soc, pp 401–418

    Google Scholar 

  • Fairhall AW, Buddemeir RW, Yang IA, Young YA (1969) Radiocarbon from nuclear testing and air-sea exchange of CO2. Antarctic J 4:14–18

    Google Scholar 

  • Faltings V, Harteck P (1950) Der Tritium Gehalt der Atmosphere. Ztschr Naturforsch 8:438–439

    Google Scholar 

  • Fergussen GY (1963) Upper tropospheric carbon-14 levels during spring 1961. J Geophys Res 68:3933–3941

    Google Scholar 

  • Ferronsky VI, Polyakov VA (2012) Isotopes in the Earth’s hydrosphere. Springer, Dordrecht

    Google Scholar 

  • Ferronsky VI, Danilin AI, Dubinchuk VT et al (1968) Radioisotope methods of investigation in ingeneering geology and hydrogeology. Atomizdat, Moskva

    Google Scholar 

  • Ferronsky VI, Dubinchuk VT, Polyakov VA et al (1975) Environmental isotopes of the hydrosphere. Nedra, Moskva

    Google Scholar 

  • Ferronsky VI, Danilin AI, Dubinchuk VT et al (1977) Radioisotope methods of investigation in ingeneering geology and hydrogeology. Atomizdat, Moskva

    Google Scholar 

  • Fireman EL (1967) Radioactivities in meteorites and cosmic-ray variation. Geochim Cosmochim Acta 31:1197–1206

    Google Scholar 

  • Fireman EL, Stoenner RW (1982) Carbon and carbon-14 in lunar soil 14163. Proc 12 Lunar and Planet Sci Conf NY 12:559–565

    Google Scholar 

  • Fluss MJ, Dudey ND (1971) Tritium and helium yields in fast fission of 235U. Trans Amer Nucl Soc 14:809–812

    Google Scholar 

  • Fonselius S, Östlund HG (1959) Natural radiocarbon measurements on surface water from the North Atlantic and the Arctic sea. Tellus 11:77–82

    Google Scholar 

  • Fontes JC (1976) Les isotopes du milieu dans les laux naturells. Le Houille Blanche 3/4:205–221

    Google Scholar 

  • Fröhlich K, Jordan H, Hebert D (1977) Radioactive Umveltisotope in der Hydrologie. Grundstoffindustrie, Leipzig

    Google Scholar 

  • Galimov EM (1968) Geochemistry of stable carbon isotopes. Nedra, Moskva

    Google Scholar 

  • Gillespie R, Polach YA (1979) The suitability of marine shells for radiocarbon dating of Australian prehistory. In: Radiocarbon dating. University of Calif. Press, Berkeley, pp 404–421

    Google Scholar 

  • Gonfiantini R, Panichi C (1982) Geothermal water studies. In: Guidebook on nuclear techniques in Hydrology. IAEA, Vienna, pp 151–162

    Google Scholar 

  • Gray DC, Damon PE (1970) Sunspots and radiocarbon dating in the middle ages. In: Scientific methods in medieval archeology. University of California Press, Berkley, pp 167–182

    Google Scholar 

  • Gribbin J, Lem GG (1980) Climate change in hystorical period. In: Climate change. Gidrometeoisdat, Leningrad, pp 122–140 (transl. from Engl.)

    Google Scholar 

  • Hagemann F, Grey J, Machta L, Turkevich A (1959) Stratospheric carbon-14, carbon dioxide, tritiumю. Science 130:542–552

    Google Scholar 

  • Harteck P (1954) Relative abundance of HT and HTO in the atmosphere. J Chem Phys 22:1746–1751

    Google Scholar 

  • Houtermans J, Suess HE, Munk W (1967) Effect of industrial fuel combustion on the carbon− 14 level of atmospheric CO2. In: Radioactive dating and methods of low-level counting: proceedings of symp, IAEA, Vienna, pp 57–68

    Google Scholar 

  • International Atomic Energy Agency (1973) Bulletin No 4. IAEA, Vienna, pp 10–16

    Google Scholar 

  • International Atomic Energy Agency (1983) Guidebook on nuclear techniques in hydrology (1983 Edition), IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (1969, 1970, 1971, 1973, 1975, 1979, 1983, 1986, 1990, 1994) Environmental isotope data: world survey of isotope concentrations in precipitation, No 1–10, IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (1996) Manual on the mathematical models in isotope hydrology. Tecdoc no 910. IAEA, Vienna

    Google Scholar 

  • Jouzel J, Pourchet M, Lorius C, Merlivat L (1979) Artificial tritium fall-out at the South Pole. In: Behaviour of tritium in the environment: proceedings of symp, IAEA, Vienna, pp 31–45

    Google Scholar 

  • Karasev BV, Sokolovsky LG, Kuznetsova LA (1981) Application of carbon isotopes for identification of break zones gassing by carbon dioxide. In: Ferronsky VI (ed) Investigation of natural waters by isotope methods. Nauka, Moskva, pp 155–157

    Google Scholar 

  • Katrich IYu (1990) Tritium in natural waters after the Chernobyl atomic power accident. Meteorol and Hydrol 5:92–97

    Google Scholar 

  • Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344

    Google Scholar 

  • Keeling CD (1972) Carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with oceans and land plants. In: Chemistry of the lower atmosphere. Plenum , NY, pp 251–329

    Google Scholar 

  • Kellog WW (1980) Global influence on human activity on climate’. In: Climate change. Hydrometeoizdat, Leningrad, pp. 273–302 (transl. from English)

    Google Scholar 

  • Kinman TD (1956) An attempt to detect deuterium in the solar atmosphere. Month Not Roy Astrophys Soc 116:77

    Google Scholar 

  • König LA (1979) Impact of the environment of tritium releases from the Karlsruhe Nuclear Research Center. In: Behaviour of tritium in the environment: proc of symp, IAEA, Vienna, pp 591–610

    Google Scholar 

  • Krejči K, Zeller A (1979) Tritium pollution in the Swiss luminous compound industry. Behaviour of tritium in the environment: proc of symp, IAEA, Vienna, pp 66–77

    Google Scholar 

  • Lal D (1963) Study of long and short-term geophysical processes using natural radioactivity. In: Radioactive dating: proc of symp, IAEA, Vienna, pp 149–157

    Google Scholar 

  • Lal D, Peters B (1962) Cosmic-ray-produced isotopes and their application to problems in geophysics. Progr Elem Part Cosm Ray Phys 6:1–74

    Google Scholar 

  • Lal D, Peters B (1967) Cosmic-ray-produced radioactivity on the Earth. Encycl Phys 46:551–612

    Google Scholar 

  • Lal D, Venkatavaradan VS (1967) Activation of cosmic dust by cosmic-ray particles. Earth Planet Sci Lett 3:293–310

    Google Scholar 

  • Lal D, Rajan RS, Venkatavaradan VS (1967) Nuclear effects of solar and “galactic” cosmic-ray particles in near-surface regions of meteorites. Geochim Cosmochim Acta 31:1859–1869

    Google Scholar 

  • Libby WF (1955) Radiocarbon dating. Chicago University Press, Chicago

    Google Scholar 

  • Libby WF (1963) Moratorium tritium geophysics. J Geophys Res 68:4485–4494

    Google Scholar 

  • Libby WF (1967) History of radiocarbon dating. In: Radiocarbon dating and methods of low-level counting: proc symp, IAEA, Vienna, pp 3–25

    Google Scholar 

  • Libby LM, Pandolfi LJ (1979) Isotopic tree thermometers: anticorrelation with radiocarbon. In: Radiocarbon dating. Univ Calif Press, Berkeley, pp 661–669

    Google Scholar 

  • Locante J (1971) Tritium in pressurized water reactor. Trans Am Nucl Soc 14:161–162

    Google Scholar 

  • Lopes JS, Pinte RE, Almendra M, Machado JA (1977) Variation of 14C activity in portuguese wines from 1940 to 1974. In: Low-radioactivity measurements and applications. Proceedings of a symposium in High Tatras. IAEA, Vienna, pp 265–268

    Google Scholar 

  • Lujanas VYu (1975) On the rate of cosmogenic radionuclides production. Cosmogenic Radioact Isotopes 3:17–25 (Vilnius)

    Google Scholar 

  • Lujanas V Yu (1979) Cosmogenic radionuclides in the atmosphere. Mokslas, Vilnius

    Google Scholar 

  • Maloszewski P, Zuber A (1996) Lanped parameter models for the interpretation of environmental tracer data. In: Manual on the Mathematical Models inIsotope Hydrology. Tecdoc No 910, IAEA, Vienna, pp 9–58

    Google Scholar 

  • Martell EA (1963) On the inventory of artificial tritium and its occurrence in atmospheric methane. J Geophys Res 68:3759–3769

    Google Scholar 

  • Martin ID, Hackett IP (1974) Tritium in atmospheric hydrogen. Tellus 26:603–607

    Google Scholar 

  • Martinec J, Siegenthaler U, Oeschger H et al (1974) A new insights into the run-off mechanism by environmental isotopes. In: Isotope techniques in groundwater hydrology: proc symp, vol. 1, IAEA, Vienna, pp 129–142

    Google Scholar 

  • Mason AS, Öslund HG (1979) Atmospheric HT and HTO: V. Distribution and large-scale circulation. In: Behaviour of tritium in the environment: proc symp, IAEA, Vienna, pp 3–15

    Google Scholar 

  • Michel RL, Suess HE (1975) Bomb tritium in the Pacific ocean. J Geophys Res 40:4139–4152

    Google Scholar 

  • Miskel JA (1973) Production of tritium by nuclear weapons’. In: Moghissi F, Carter M (eds) Tritium, messenger graphics. Las Vegas, Phoenix, pp 79–85

    Google Scholar 

  • Miyake Y (1969) Fundamentals of geochemistry. Nedra, Moskva (translation from English)

    Google Scholar 

  • Mook WG (1977) The radiocarbon time scale. In: Low radioact meas appl: proc symp. High Tatras, Bratislava, pp 193–298

    Google Scholar 

  • Morkovkina IK (1978) Tritium application in study of groundwater recharge. In: Frronsky VI (ed) Isotopy of natural waters. Nauka, Moskva, pp 165–179

    Google Scholar 

  • Morkovkina IK (1979) Tritium use in hydrogeological studies. In: Frronsky VI (ed) Isotope investigation of natural waters. Nauka, Moskva, pp 75–84

    Google Scholar 

  • Münnich KO (1968) Isotopen datierung von Grundwasser. Naturwissenschaften 55:158–163

    Google Scholar 

  • Münnich KO, Roether W (1967) Transfer of bomb 14C and tritium from the atmosphere to the ocean on the basis of tritium and 14C profiles. In: Radiocarbon dating and methods of low-level counting: proc symp, IAEA, Vienna, pp 93–104

    Google Scholar 

  • Münnich KO, Vogel JC (1963) Investigation of meridional transport in the troposphere by means of carbon-14 measurement. Radiocarbon dating. Proceedings of a symp, IAEA, Vienna, pp 189–197

    Google Scholar 

  • Münnich KO, Roether W, Thilo L (1967) Dating of groundwater with tritium and 14C. In: Isotope hydrology: proc. symp., IAEA., Vienna, pp 305–319

    Google Scholar 

  • Nir A (1964) On the interpretation of tritium age measurements of groundwater. J Geophys Res 69:423–431

    Google Scholar 

  • Nydal R, Lövseth K, Gulliksen S (1979) A survey of radiocarbon variation in nature since the Test Ban Treaty. In: Radiocarbon dating. University of California, Berkely, pp 313–323

    Google Scholar 

  • Oeschger H, Siegenthaller U (1979) Prognosis for expected CO2 increase to fossil fuel combustion. In: Radiocarbon dating. University of California , Berkely, pp 633–642

    Google Scholar 

  • Östlund HG, Berry E (1970) Modification of atmospheric tritium and water vapour by Lake Tahoe. Tellus 22:463–468

    Google Scholar 

  • Östlund HG, Fine RA (1979) Oceanic distribution and transport of tritium. In: Behaviour of tritium in the environment. Proceedings of a symposium, IAEA, Vienna, pp 303–312

    Google Scholar 

  • Östlund HG, Mason AS (1974) Atmospheric HT and HTO: Experimental procedures and tropospheric data 1968–1972. Tellus 26:91–102

    Google Scholar 

  • Pinneker EV, Romanov VV, Dzyuba AA (1978) The peculiarities of tritium distribution in the near-Baykal Lake natural waters. In: Regional hydrogeology and engineering geology of the Eastern Siberia. Nauka, Novosibirsk, pp 86–92

    Google Scholar 

  • Plummer LN (2005) Dating of young groundwater. In: Aggarwal P, Gat J, Froehlich K (eds) Isotopes in the water cycle. Springer, Dordrechht, pp 193–218

    Google Scholar 

  • Polyakov VA, Golubkova EV (2007) Protection study ogf grounwaters by isotopic and hydrochemical data. Prospect Prot of Miner Resour 5:48–52

    Google Scholar 

  • Polyakov VA, Seletsky YuB (1978) Radiocarbon and tritium study of groundwater dynamics in the Assel-Kliasinan aquifer at Sudogda River region. Geokhimiya 8:1230–1238

    Google Scholar 

  • Radnell CL, Aitken MJ, Otlet RL (1979) In situ 14C production in wood. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California Press, Berkely, pp 643–650

    Google Scholar 

  • Rafter TA, O’Brien BJ (1972) C-14 measurements in the atmosphere and in the South Pacific Ocean. In: Proceedings of the 8th international conf. radiocarbon dating, Lower Hutt, Wellington, p 241

    Google Scholar 

  • Ralf EK (1972) A cyclic solution for the relationship between magnetic and atmospheric C-14 changes. In: Proc. 8th Intern conf. radiocarbon dating. Lower Hutt, Wellington, pp 76–84

    Google Scholar 

  • Ralf EK, Klein J (1979) Composite computer plots of 14C dates for treering-dated Bristlecone Pine and Sequoies. In: Radiocarbon dating. University of California Press, Berkely, pp 545–553

    Google Scholar 

  • Ravoire I, Lorius C, Robert J, Roth E (1970) Tritium content in a firn core from Antarctica. J Geophys Res 75:2331–2336

    Google Scholar 

  • Roether W, Münnich KO, Östlund HE (1970) Tritium profile at the North Pacific (1969) Geosecs intercalibration station. J Geophys Res 75:7672–7675

    Google Scholar 

  • Roether W, Münnich KO, Ribbat B, Sarmiento JL (1980) A transatlantic 14C section near 40 °N of F/S Meteor. Ergebnisse A 21:57–69

    Google Scholar 

  • Romanov VV (1978) Regularities in tritium distribution for natural waters. In: Ferronsky VI (ed) Isotopy of natural waters. Nauka, Moskva, pp 46–89

    Google Scholar 

  • Romanov VV (1982) Tritium use in study of marine and river water mixing. Water Res 5:22–26

    Google Scholar 

  • Romanov VV, Kikichev HG (1979) Tririum in atmospheric hydrogen. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 85–92

    Google Scholar 

  • Romanov VV, Salnova LV, Seryegina LA (1979) Tritium use in studying dynamics of the Baykal Lake waters. In: Ferronsky VI (ed) Isotope sdudies of natural waters. Nauka, Moskva, pp 46–54

    Google Scholar 

  • Rooth CG, Östlund HE (1972) Penetration of tritium into the Atlantic thermocline. Deep-sea res 19:481–492

    Google Scholar 

  • Rowland FS (1959) Ratio of HT/HTO in the atmosphere. J Chem Phys 30:1098–1099

    Google Scholar 

  • Schell WR (1970) Investigation and comparison of radiogenic argon, tritium and C-14 in atmospheric reservoir. In: Radiocarbon variations and absolute chronology, XII nobel symp. Wiley, NY, pp 447–466

    Google Scholar 

  • Schell WR, Sauzay G (1970) Global sampling and analysis of tritium and stable isotopes. In: Report to panel on procedures for establisching limits for radionuclides in the sea, IAEA, Vienna

    Google Scholar 

  • Schell WR, Sauzay G, Payne B (1970) Tritium injections and concentration distribution in the atmosphere. J Geophy Res 75:2251–2266

    Google Scholar 

  • Schmidt U (1974) Molecular hydrogen in the atmosphere. Tellus 26:78–90

    Google Scholar 

  • Schlosser P, Stute M, Sonntag C, Münnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Latt 89:353–368

    Google Scholar 

  • Schlosser P, Shapiro SD, Stute M (2000) Tritium/3He measurements in young groundwater: progress in applications to complex hydrological systems. In: Tracers and modelling in hydrogeology: proc intern conf, IASH Liege, pp 481–486

    Google Scholar 

  • Scholz TG, Ehhalt DH, Heidt LE, Martell EA (1970) Water vapour, molecular hydrogen, methane and tritium concentrations near the stratopause. J Geophys Res 75:3049–3054

    Google Scholar 

  • Sehgal BR, Remport HH (1971) Tritium production in fast reactors, containing B4C. Trans Amer Nucl Soc 14:779–780

    Google Scholar 

  • Seletsky Yu B, Nechaev VI, Polyakov VA (1979) Radiocarbon as an indicator of groundwater recharge and discharge location. In. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 111–121

    Google Scholar 

  • Singer SF (1958) The primery cosmic radiation and its time variations. Prog Cosm Ray Phys 4:205–335

    Google Scholar 

  • Sobotovich EV, Bondarenko GN, Vetshtein VE et al (1977) Isotope and geochemical estimates of a degree of surface and groundwater interconnection. Naukova Dumka, Kiev

    Google Scholar 

  • Sokolovsky LG, Polyakov VA, Golubkova EV (2007) Light isotopes of waters of the Asdov-Kuban artesian basin: Conditions of formation and balneological significance. Prospect Protect Miner Resour 5:44–47

    Google Scholar 

  • Sorokhtin OG (2002) Green house effect: myth and reality. Inf Analit Vest, Rus Center, No 1, Moskva, pp 27–28

    Google Scholar 

  • Stenhause MJ, Baxter MS (1979) The uptake of bomb 14C in humans. In: Radiocarbon dating. University. California Press, Berkely, pp 324–341

    Google Scholar 

  • Sternberg RS, Damon PE (1979) Sensitivity of radiocarbon fluctuations and inventory to geomagnetic and reservoir parameters. In: Radiocarbon dating. University of California Press, Berkely, p 691

    Google Scholar 

  • Stewart GL (1965) Experinces using tritium in scientific hydrology. In: Radiocarbon and tritium dating: proceedings of the 6th intern. conf., USAEC, Washington, pp 645–658

    Google Scholar 

  • Stiel G, Haendel D, Runge A et al (1979) Isotopenverhältnisse und hydrogeologischen Praxis sowie in der Umwelt. Zeits Ang Geol 25:9–14

    Google Scholar 

  • Stuiver M (1965) Carbon-14 content of 18th and 19th century wood: variations correlated with sunshot activity. Science 149:533–535

    Google Scholar 

  • Stuiver M (1980) 14C distribution in the Atlantic ocean. J Geophys Res 85:2711–2718

    Google Scholar 

  • Stuiver M, Quay PD (1981) Atmospheric 14C change resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci Lett 53:349–362

    Google Scholar 

  • Suess HE (1969) Tritium geophysics as an international research project. Science 163:1705–1410

    Google Scholar 

  • Suess HE (1970) The three causes of the secular C-14 fluctuations, their amplitudes and time constants. In: Radiocarbon variations and absolute chronology, XII nobel symp. Wiley, New York, pp 595–605

    Google Scholar 

  • Suess HE (1979) A calibration table for conventional radiocarbon dates. In: Radiocarbon dating. University of California, Berkely, pp 777–784

    Google Scholar 

  • Sulerzhitsky LD, Forova VS (1966) Radiocarbon in woods from the modern volcanous areas. Dokl. AN UzbSSR 6:1421–1423

    Google Scholar 

  • Taylor CR (1968) A comparison of tritium and strontium-90 in fallout in the Southern hemisphere. Tellus 20:559–576

    Google Scholar 

  • Taylor JR, Pefers FE (1972) Tritium transport in LMFBR’s. Trans. Am Nucl Soc 15:431–432

    Google Scholar 

  • Thatcher LL, Payne BR (1965) The distribution of tritium in precipitation over continents and its significance to groundwater dating. In: Radiocarbon and t6ritium dating. Proceedings of the 6th intern conf, USAEC, Washington, pp 604–629

    Google Scholar 

  • Theodorsson P (1967) Natural tritium in groundwater studies. In: Isotope hydrology: proceedings of a symp, IAEA, Vienna, pp 371–380

    Google Scholar 

  • Tokarev I, Zubkov AA, Rumynin VG et al (2005) Origin of high 234U/238U ratio in post-permafrost aquifer. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment, mining impact and consequences. Springer, New York, pp 854–863

    Google Scholar 

  • Tolstikhin IN, Kamensky IL (1969) Determination of of groundwater age by the T-3He method. Geochen Int 6:810–811

    Google Scholar 

  • Van Hook WA (1968) Condensed Phase Isotope Effects. Isotopenpraxis 5:161–169

    Google Scholar 

  • Verhagen BTh, Smith PE, McGregore I et al (1979) Tritium profiles in Kalachari sands as a measure of rain-water recharge. In: Isotope hydrology 1978: proceedings of a symp, vol 2, IAEA, Vienna, pp 733–749

    Google Scholar 

  • Vlasova LS, Brezgunov VS (1978) The distribution of hydrogen and oxygen isotopic composition in natural brines by model calculations. In: Ferronsky VI (ed) Isotope study of natural waters. Nauka, Moskva, pp 119–139

    Google Scholar 

  • Webber W (1967) The spectrum and charge composition of the primary cosmic radiation. Encycl Phys 46:181

    Google Scholar 

  • Weiss W, Roether W (1975) Der Tritium abfluss des Rheins 1961–1973. Dt. Gewasser Kd Mitt 19:1–10

    Google Scholar 

  • Weiss W, Bullacher J, Roether W (1979) Evidence of pulsed discharge of tritium from nuclear energy installations in Central European precipitation. In: Behaviour of tritium in the environment: proceedings of a symp, IAEA, Vienna, pp 17–30

    Google Scholar 

  • Wendland WM, Donley DL (1971) Radiocarbon calendar age relationship. Earth Plane Sci Lett 11:135–139

    Google Scholar 

  • Yang A, Fairhall AW (1972) Variations of natural radiocarbon during the last 2000 years and geophysical mechanism for producing them. In: Proceedings of the 8th intern conf on radiocarbon datin. Lower Hutt, Wellington, pp A44–A54

    Google Scholar 

  • Young JA, Wogman NA, Thomas CW, Perkins R (1970) Short lived cosmic ray produced radionuclides as tracers of atmospheric processes. In: Radionuclides in the environment. Adv Chem Ser No 93, Am Chem Soc, Washington, pp 506–521

    Google Scholar 

  • Zavelsky FS (1968) One more clarification to radiocarbon method Dokl. AN SSSR 180:1189–1192

    Google Scholar 

  • Zlobina VL, Kovalevsky VS, Morkovkina IK et al (1980) On the use of helium and tritium mapping for groundwater recharge study. Water Res 1:166–170

    Google Scholar 

  • Zuber A (1994) On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifer. In: Mathematical models and their application to isotope studies in groundwater hydrology, IAEA, Vienna, pp 11–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ferronsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferronsky, V. (2015). Cosmogenic Radioisotopes for Study of the Genesis and Dynamics of Water. In: Nuclear Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-12451-3_10

Download citation

Publish with us

Policies and ethics