Cosmogenic Radioisotopes for Study of the Genesis and Dynamics of Water

  • V. I. FerronskyEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


The Earth’s atmosphere is penetrated by a continuous flux of charged particles, consisting of protons and nuclei of various elements of cosmic origin. Consequently, a great variety of radioisotopes, referred to as cosmogenic, are produced due to the interaction of these particles with the atomic nuclei of elements that constitute the atmosphere. Transported by air masses, radioisotopes are abundant over the whole gaseous sphere of the Earth. Being mixed with atmospheric moisture, a proportion falls over the Earth’s surface, to enter the hydrological cycle as components of surface waters, soil-ground moisture and groundwaters. Another proportion becomes a component of ocean and inland basin waters through exchange at the surface of water reservoirs. Finally, the Earth’s biosphere plays an active role in exchange processes, which are of great importance for some cosmogenic isotopes. Cosmic dust is another source of cosmogenic isotopes, as are meteorites that are continually falling onto the Earth’s surface. Being in cosmic space these meteorites have been subjected to a bombardment of cosmic radiation. Nuclear reactions accompanying the process produce many radioisotopes. The origin and distribution of cosmogenic radioisotopes, global circulation of tritium, radiocarbon and other cosmogenic radionuclides are discussed in this chapter.


Cosmic Radiation Water Water Tritium Concentration Cosmic Dust Tritium Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aegerter SK, Loosli HH, Oeschger H (1967) Variation in the production of cosmogenic radionuclides. In: Radioactive dating and methods of low-level counting: proceed symp, IAEA, Vienna, pp 49–55Google Scholar
  2. Afanasenko EA, Morkovkina IK, Romanov VV (1973) Age of groundwater in the Tas-Khayat Ridge and Selennyakh depression. Bull Moscow Univ, Ser Geol 5:105–109Google Scholar
  3. Afanasyev AP (1960) Water balance of Baykal Lake. Proc Baykal Limnol Stn 18:85–95Google Scholar
  4. Allison GB, Hughes MW (1974) Environmental tritium in the unsaturated zone: estimation of recharge to an unconfined aquifer. In: Isotope techniques in groundwater hydrology: proceedings of a symposium, IAEA, Vienna, 11–15 March 1974, pp 57–70Google Scholar
  5. Andersen LJ, Sevel T (1974) Six years’ environmental tritium profiles in the unsaturated and saturated zones. In: Isotope techniques in groundwater hydrology: proceeding symp, vol 1, IAEA, Vienna, pp 3–18Google Scholar
  6. Andrews JN, Kay RLE (1982) Natural production of tritium in permeable rocks. Nature 298:361–363Google Scholar
  7. Appa Rao MVK (1962) The 3He/(3He + 4He) ratio in primary cosmic radiation. J Geophys Res 67:1289–1392Google Scholar
  8. Atakan YW, Roether W, Münnich KO, Matthess G (1974) The sandhausen shallow groundwater tritium experiment. In: Isotope techniques in groundwater hydrology: proceedings of a symposium, IAEA, Vienna, 11–15 March 1974, vol 1, pp 21–43Google Scholar
  9. Bainbridge AE (1963) Tritium in the Northern Pacific surface water. J Geophys Res 68:3785–3789Google Scholar
  10. Bartels OG (1972) An estimate of volcanic contributions to the atmosphere and volcanic gases and sublimates as the source of the radioisotopes 10B, 35S, 32P and 22Na. Heal Phys 22:387–392Google Scholar
  11. Begemann F (1959) Neubestimmung der natürlichen irdischen Tritiumzerfallstrate und die Frage der Herkunft des natürlichen Tritium. Naturforsch 4a:334–342Google Scholar
  12. Begemann F, Friedman I (1968) Isotopic composition of atmospheric hydrogen. J Geophys Res 73:1139–1147Google Scholar
  13. Begemann F, Libby WF (1957) Continental water balance, groundwater inventory and storage times, surface ocean, mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim Cosmochim Acta 12:277–296Google Scholar
  14. Berger R (1979) Artificial radiocarbon in the stratosphere. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California, Berkeley, pp 309–321Google Scholar
  15. Bhaudari W, Fruchter J, Evans J (1969) Rates of production of 22Na and 28Mg in the atmosphere by cosmic radiation. Earth Planet Sci Lett 7:89–92Google Scholar
  16. Bien GS, Suess HE (1967) Transfer and exchange of 14C between the atmosphere and the surface water of the Pacific Ocean. In: Radiocarbon Dating and Methods of Low-Level Counting: proc. a symp, IAEA, Vienna, pp 105–115Google Scholar
  17. Bien GS, Rakestrow P, Oldenbourg M, Suess HE (1963) Investigations in marine environments using radioisotopes produced by cosmic rays. In: Radiocarbon dating: proc. symp, IAEA, Vienna, pp 159–174Google Scholar
  18. Bochaler P, Eberhardt P, Geiss J (1971) Tritium in lunar materials. Proc. 2nd Lunar Sci Conf 2:1803–1812Google Scholar
  19. Boella GC, Dilworth M, Panetti M, Scarsi L (1968) The atmospheric and leakage flux of neutrons produced in the atmosphere by cosmic ray interactions. Earth Planet Sci Lett 4:393–398Google Scholar
  20. Bonka H (1979) Production and emission of tritium from nuclear facilities, and the resulting problems. In: Behaviour of tritium in the Environment: proc symp. IAEA, Vienna, pp 105–122Google Scholar
  21. Borevsky BV, Polyakov VA, Subbotina LA (1981) Investigation of regularities in leaching through Neocom-Jurassic strata within the depression funnel of the Bryansk water intake well. In: Isotopes in the Hydrosphere, Abstract Symp, IWP RAN, Moskva, pp 52–53Google Scholar
  22. Bradley W, Stout G (1970) Vertical distribution of tritium in water vapor in the lower troposphere. Tellus 22:699–706Google Scholar
  23. Broder DP, Golubev LI, Ilyasov VM (1979) Tritium distribution in the technology scheme of the New-Voronezh atomic power station. At Energy 47:120–122Google Scholar
  24. Broecker WS, Olson EA (1961) Lamont radiocarbon measurements. Radioscarbon 21:199–216Google Scholar
  25. Broecker WS, Gerard R, Erwing M, Heezen BC (1960) Natural radiocarbon in the Atlantic ocean. J Geophys Res 65:2903–2909Google Scholar
  26. Brown RM (1961) Hydrology of tritium in the Ottawa Valley. Geochim Cosmochim Acta 21:199–216Google Scholar
  27. Brown RM (1970) Distribution of hydrogen isotopes in Canada waters. In: Isotope Hydrology: proc. symp, IAEA, Vienna, pp 3–21Google Scholar
  28. Brown R, Grummit WE (1956) The determination of tritium in natural waters. Canad J Chem 34:220–226Google Scholar
  29. Burchuladze AA, Gedevanishvili DD, Pagava SV, Togonidze GI (1977) Variation of radiocarbon content in the atmosphere for 1950–1975 years measured in Georgian vines. In: Low radioactivity measurements and mpplications. Proceedings of a symposium, High Tatras, 1975, Slovenske Pedagog, Nakland, Bratislava, pp 261–263Google Scholar
  30. Burger LL (1979) Distribution and reactions of tritiated hydrogen and methan. In: Behaviour of Tritium in the Environment, proc symp. IAEA, Vienna, pp 47–63Google Scholar
  31. Burkhard W, Fröhlich K (1970) Grundlagen hydrologischer tritium untersuchungen und Ihre anwendung bei der bestimmung der herkunft in grubenwasser einer eisenerzgrube. Bergakademie, Freiberg vol 22, pp 15–30Google Scholar
  32. Buttlar HV, Libby WF (1955) Natural distribution of cosmic ray produced tritium. J Inorg Nucl Chem 1:75–91Google Scholar
  33. Cain WF (1979) 14C in modern American trees. In: Radiocarbon dating. University of California , Berkeley, pp 495–510Google Scholar
  34. Combs F, Doda RY (1979) Large-scale distribution of tritium in a commercial product. In: Behaviour of Tritium in the Environment: proc symp, IAEA, Vienna, pp 93–99Google Scholar
  35. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149Google Scholar
  36. Daly IC, Manchester AV, Gabay IJ, Sax NI (1968) Tritiated moisture in the atmosphere, surrounding a nuclear fuel reprocessing plant. Radiol Heal Data and Repts 11:217–229Google Scholar
  37. Damon PE (1970) Climatic versus magnetic perturbation of the atmospheric C-14 reservoir. In: Radiocarbon variations and abcolute chronology, XII nobel symp. Wiley, NY, pp 571–593Google Scholar
  38. Deak J (1974) Use of environmental isotopes to investigate the connection between surface waters in the Nagynusad region, Hungary. In: Isotope techniques in groundwater hydrology: proceedings a symp, vol 1, IAEA, Vienna, pp 157–167Google Scholar
  39. Dergachev VA (1975) Variations in solar activity and radiocarbon content in the atmosphere. Izv AN SSSR, Ser Phys 32:325–333Google Scholar
  40. Dergachev VA (1977) Optimal model for residence time determination of exchange reservoir. In: Low-radioaktivity measurements and applications, proc. symp., IAEA, Vienna, pp 269–277Google Scholar
  41. Dergachev VA, Kocharov GE (1977) The ceqular cycles of radiocarbon variation in the Earth atmosphere. In: Low-Radioaktivity Measurements and Applications. Proceedings a symp, IAEA, Vienna, pp 279–286Google Scholar
  42. Devis DH (1970) Geohydrologic interpretations of a volcanic island from environmental isotopes. Water Resour Res 6:652–671Google Scholar
  43. Dinçer T, Payne BR (1971) An environmental isotope study of the south-western karst region of Turkey. J Hydrol 13:233–258Google Scholar
  44. Dockins KO, Bainbridge AE, Houtermans JC, Suess HE (1967) Tritium in the mixed layer of the North Pacific Ocean.In:Radioactive aating and methods of low-level counting, proceedings a symp, IAEA, Venna, pp 120–160Google Scholar
  45. Domanitsky AP (1971) Rivers and lakes of the Soviet Union. Gidrometizdat, LeningradGoogle Scholar
  46. Dubinchuk VT (1979) What is the groundwater age? MOIP, Geol Sect 54:70–79Google Scholar
  47. Dudey ND, Malewski RL, Rymas SL (1972) Tritium yield from fast-neutron fission of 235U. Trans Amer Nucl Soc 15:483Google Scholar
  48. Ehhalt DN (1966) Tritium and deuterium in the atmospheric hydrogen. Tellus 18:249–255Google Scholar
  49. Ehhalt DN (1971) Vertical profiles and transport HTO in the troposphere. J Geophys Res 76:7351–7367Google Scholar
  50. Ehhalt DN (1974) The atmospheric cycle of methane. Tellus 26:58–63Google Scholar
  51. Eisenbund M, Bennett D, Blanco RE et al (1979) Tritium in the environment-NCRP report No 62. In: Behaviour of tritium in the environment: proceedings symp, IAEA, Vienna, pp 585–587Google Scholar
  52. Ekdahl CA, Keeling CD (1973) Atmospheric CO2 in the natural carbon cycle: 1. Quantitative reduction from records at Mouna Loa Observatory and at the South Pole. In: Carbon and biosphere: 24th Brukhaven symp biol, Springfield, pp 51–85Google Scholar
  53. Eriksson E (1963) Atmospheric tritium as a tool for the study of certain hydrologic aspects of river basins. Tellus 15:303–308Google Scholar
  54. Eriksson E (1965a) Account of the major pulses of tritium and their effects in the atmosphere. Tellus 17:118–130Google Scholar
  55. Eriksson E (1965b) Deuterium and oxygen-18 in precipitation and other natural waters. Tellus 17:498–512Google Scholar
  56. Evans GV, Otlet RL, Downing RA et al (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In: Isotope Hydrology: proceedings symp, vol 2, IAEA, Vienna, pp 679–706Google Scholar
  57. Fairhall AW (1971) Radiocarbon in the Seas, Rep.No RLO-225-T20 -3, US AECGoogle Scholar
  58. Fairhall AW, Young YA (1970) Radiocarbon in the environment. In: Radionuclides in the environment. Adv Chem Ser.No 9, Am Chem Soc, pp 401–418Google Scholar
  59. Fairhall AW, Buddemeir RW, Yang IA, Young YA (1969) Radiocarbon from nuclear testing and air-sea exchange of CO2. Antarctic J 4:14–18Google Scholar
  60. Faltings V, Harteck P (1950) Der Tritium Gehalt der Atmosphere. Ztschr Naturforsch 8:438–439Google Scholar
  61. Fergussen GY (1963) Upper tropospheric carbon-14 levels during spring 1961. J Geophys Res 68:3933–3941Google Scholar
  62. Ferronsky VI, Polyakov VA (2012) Isotopes in the Earth’s hydrosphere. Springer, DordrechtGoogle Scholar
  63. Ferronsky VI, Danilin AI, Dubinchuk VT et al (1968) Radioisotope methods of investigation in ingeneering geology and hydrogeology. Atomizdat, MoskvaGoogle Scholar
  64. Ferronsky VI, Dubinchuk VT, Polyakov VA et al (1975) Environmental isotopes of the hydrosphere. Nedra, MoskvaGoogle Scholar
  65. Ferronsky VI, Danilin AI, Dubinchuk VT et al (1977) Radioisotope methods of investigation in ingeneering geology and hydrogeology. Atomizdat, MoskvaGoogle Scholar
  66. Fireman EL (1967) Radioactivities in meteorites and cosmic-ray variation. Geochim Cosmochim Acta 31:1197–1206Google Scholar
  67. Fireman EL, Stoenner RW (1982) Carbon and carbon-14 in lunar soil 14163. Proc 12 Lunar and Planet Sci Conf NY 12:559–565Google Scholar
  68. Fluss MJ, Dudey ND (1971) Tritium and helium yields in fast fission of 235U. Trans Amer Nucl Soc 14:809–812Google Scholar
  69. Fonselius S, Östlund HG (1959) Natural radiocarbon measurements on surface water from the North Atlantic and the Arctic sea. Tellus 11:77–82Google Scholar
  70. Fontes JC (1976) Les isotopes du milieu dans les laux naturells. Le Houille Blanche 3/4:205–221Google Scholar
  71. Fröhlich K, Jordan H, Hebert D (1977) Radioactive Umveltisotope in der Hydrologie. Grundstoffindustrie, LeipzigGoogle Scholar
  72. Galimov EM (1968) Geochemistry of stable carbon isotopes. Nedra, MoskvaGoogle Scholar
  73. Gillespie R, Polach YA (1979) The suitability of marine shells for radiocarbon dating of Australian prehistory. In: Radiocarbon dating. University of Calif. Press, Berkeley, pp 404–421Google Scholar
  74. Gonfiantini R, Panichi C (1982) Geothermal water studies. In: Guidebook on nuclear techniques in Hydrology. IAEA, Vienna, pp 151–162Google Scholar
  75. Gray DC, Damon PE (1970) Sunspots and radiocarbon dating in the middle ages. In: Scientific methods in medieval archeology. University of California Press, Berkley, pp 167–182Google Scholar
  76. Gribbin J, Lem GG (1980) Climate change in hystorical period. In: Climate change. Gidrometeoisdat, Leningrad, pp 122–140 (transl. from Engl.)Google Scholar
  77. Hagemann F, Grey J, Machta L, Turkevich A (1959) Stratospheric carbon-14, carbon dioxide, tritiumю. Science 130:542–552Google Scholar
  78. Harteck P (1954) Relative abundance of HT and HTO in the atmosphere. J Chem Phys 22:1746–1751Google Scholar
  79. Houtermans J, Suess HE, Munk W (1967) Effect of industrial fuel combustion on the carbon− 14 level of atmospheric CO2. In: Radioactive dating and methods of low-level counting: proceedings of symp, IAEA, Vienna, pp 57–68Google Scholar
  80. International Atomic Energy Agency (1973) Bulletin No 4. IAEA, Vienna, pp 10–16Google Scholar
  81. International Atomic Energy Agency (1983) Guidebook on nuclear techniques in hydrology (1983 Edition), IAEA, ViennaGoogle Scholar
  82. International Atomic Energy Agency (1969, 1970, 1971, 1973, 1975, 1979, 1983, 1986, 1990, 1994) Environmental isotope data: world survey of isotope concentrations in precipitation, No 1–10, IAEA, ViennaGoogle Scholar
  83. International Atomic Energy Agency (1996) Manual on the mathematical models in isotope hydrology. Tecdoc no 910. IAEA, ViennaGoogle Scholar
  84. Jouzel J, Pourchet M, Lorius C, Merlivat L (1979) Artificial tritium fall-out at the South Pole. In: Behaviour of tritium in the environment: proceedings of symp, IAEA, Vienna, pp 31–45Google Scholar
  85. Karasev BV, Sokolovsky LG, Kuznetsova LA (1981) Application of carbon isotopes for identification of break zones gassing by carbon dioxide. In: Ferronsky VI (ed) Investigation of natural waters by isotope methods. Nauka, Moskva, pp 155–157Google Scholar
  86. Katrich IYu (1990) Tritium in natural waters after the Chernobyl atomic power accident. Meteorol and Hydrol 5:92–97Google Scholar
  87. Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344Google Scholar
  88. Keeling CD (1972) Carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with oceans and land plants. In: Chemistry of the lower atmosphere. Plenum , NY, pp 251–329Google Scholar
  89. Kellog WW (1980) Global influence on human activity on climate’. In: Climate change. Hydrometeoizdat, Leningrad, pp. 273–302 (transl. from English)Google Scholar
  90. Kinman TD (1956) An attempt to detect deuterium in the solar atmosphere. Month Not Roy Astrophys Soc 116:77Google Scholar
  91. König LA (1979) Impact of the environment of tritium releases from the Karlsruhe Nuclear Research Center. In: Behaviour of tritium in the environment: proc of symp, IAEA, Vienna, pp 591–610Google Scholar
  92. Krejči K, Zeller A (1979) Tritium pollution in the Swiss luminous compound industry. Behaviour of tritium in the environment: proc of symp, IAEA, Vienna, pp 66–77Google Scholar
  93. Lal D (1963) Study of long and short-term geophysical processes using natural radioactivity. In: Radioactive dating: proc of symp, IAEA, Vienna, pp 149–157Google Scholar
  94. Lal D, Peters B (1962) Cosmic-ray-produced isotopes and their application to problems in geophysics. Progr Elem Part Cosm Ray Phys 6:1–74Google Scholar
  95. Lal D, Peters B (1967) Cosmic-ray-produced radioactivity on the Earth. Encycl Phys 46:551–612Google Scholar
  96. Lal D, Venkatavaradan VS (1967) Activation of cosmic dust by cosmic-ray particles. Earth Planet Sci Lett 3:293–310Google Scholar
  97. Lal D, Rajan RS, Venkatavaradan VS (1967) Nuclear effects of solar and “galactic” cosmic-ray particles in near-surface regions of meteorites. Geochim Cosmochim Acta 31:1859–1869Google Scholar
  98. Libby WF (1955) Radiocarbon dating. Chicago University Press, ChicagoGoogle Scholar
  99. Libby WF (1963) Moratorium tritium geophysics. J Geophys Res 68:4485–4494Google Scholar
  100. Libby WF (1967) History of radiocarbon dating. In: Radiocarbon dating and methods of low-level counting: proc symp, IAEA, Vienna, pp 3–25Google Scholar
  101. Libby LM, Pandolfi LJ (1979) Isotopic tree thermometers: anticorrelation with radiocarbon. In: Radiocarbon dating. Univ Calif Press, Berkeley, pp 661–669Google Scholar
  102. Locante J (1971) Tritium in pressurized water reactor. Trans Am Nucl Soc 14:161–162Google Scholar
  103. Lopes JS, Pinte RE, Almendra M, Machado JA (1977) Variation of 14C activity in portuguese wines from 1940 to 1974. In: Low-radioactivity measurements and applications. Proceedings of a symposium in High Tatras. IAEA, Vienna, pp 265–268Google Scholar
  104. Lujanas VYu (1975) On the rate of cosmogenic radionuclides production. Cosmogenic Radioact Isotopes 3:17–25 (Vilnius)Google Scholar
  105. Lujanas V Yu (1979) Cosmogenic radionuclides in the atmosphere. Mokslas, VilniusGoogle Scholar
  106. Maloszewski P, Zuber A (1996) Lanped parameter models for the interpretation of environmental tracer data. In: Manual on the Mathematical Models inIsotope Hydrology. Tecdoc No 910, IAEA, Vienna, pp 9–58Google Scholar
  107. Martell EA (1963) On the inventory of artificial tritium and its occurrence in atmospheric methane. J Geophys Res 68:3759–3769Google Scholar
  108. Martin ID, Hackett IP (1974) Tritium in atmospheric hydrogen. Tellus 26:603–607Google Scholar
  109. Martinec J, Siegenthaler U, Oeschger H et al (1974) A new insights into the run-off mechanism by environmental isotopes. In: Isotope techniques in groundwater hydrology: proc symp, vol. 1, IAEA, Vienna, pp 129–142Google Scholar
  110. Mason AS, Öslund HG (1979) Atmospheric HT and HTO: V. Distribution and large-scale circulation. In: Behaviour of tritium in the environment: proc symp, IAEA, Vienna, pp 3–15Google Scholar
  111. Michel RL, Suess HE (1975) Bomb tritium in the Pacific ocean. J Geophys Res 40:4139–4152Google Scholar
  112. Miskel JA (1973) Production of tritium by nuclear weapons’. In: Moghissi F, Carter M (eds) Tritium, messenger graphics. Las Vegas, Phoenix, pp 79–85Google Scholar
  113. Miyake Y (1969) Fundamentals of geochemistry. Nedra, Moskva (translation from English)Google Scholar
  114. Mook WG (1977) The radiocarbon time scale. In: Low radioact meas appl: proc symp. High Tatras, Bratislava, pp 193–298Google Scholar
  115. Morkovkina IK (1978) Tritium application in study of groundwater recharge. In: Frronsky VI (ed) Isotopy of natural waters. Nauka, Moskva, pp 165–179Google Scholar
  116. Morkovkina IK (1979) Tritium use in hydrogeological studies. In: Frronsky VI (ed) Isotope investigation of natural waters. Nauka, Moskva, pp 75–84Google Scholar
  117. Münnich KO (1968) Isotopen datierung von Grundwasser. Naturwissenschaften 55:158–163Google Scholar
  118. Münnich KO, Roether W (1967) Transfer of bomb 14C and tritium from the atmosphere to the ocean on the basis of tritium and 14C profiles. In: Radiocarbon dating and methods of low-level counting: proc symp, IAEA, Vienna, pp 93–104Google Scholar
  119. Münnich KO, Vogel JC (1963) Investigation of meridional transport in the troposphere by means of carbon-14 measurement. Radiocarbon dating. Proceedings of a symp, IAEA, Vienna, pp 189–197Google Scholar
  120. Münnich KO, Roether W, Thilo L (1967) Dating of groundwater with tritium and 14C. In: Isotope hydrology: proc. symp., IAEA., Vienna, pp 305–319Google Scholar
  121. Nir A (1964) On the interpretation of tritium age measurements of groundwater. J Geophys Res 69:423–431Google Scholar
  122. Nydal R, Lövseth K, Gulliksen S (1979) A survey of radiocarbon variation in nature since the Test Ban Treaty. In: Radiocarbon dating. University of California, Berkely, pp 313–323Google Scholar
  123. Oeschger H, Siegenthaller U (1979) Prognosis for expected CO2 increase to fossil fuel combustion. In: Radiocarbon dating. University of California , Berkely, pp 633–642Google Scholar
  124. Östlund HG, Berry E (1970) Modification of atmospheric tritium and water vapour by Lake Tahoe. Tellus 22:463–468Google Scholar
  125. Östlund HG, Fine RA (1979) Oceanic distribution and transport of tritium. In: Behaviour of tritium in the environment. Proceedings of a symposium, IAEA, Vienna, pp 303–312Google Scholar
  126. Östlund HG, Mason AS (1974) Atmospheric HT and HTO: Experimental procedures and tropospheric data 1968–1972. Tellus 26:91–102Google Scholar
  127. Pinneker EV, Romanov VV, Dzyuba AA (1978) The peculiarities of tritium distribution in the near-Baykal Lake natural waters. In: Regional hydrogeology and engineering geology of the Eastern Siberia. Nauka, Novosibirsk, pp 86–92Google Scholar
  128. Plummer LN (2005) Dating of young groundwater. In: Aggarwal P, Gat J, Froehlich K (eds) Isotopes in the water cycle. Springer, Dordrechht, pp 193–218Google Scholar
  129. Polyakov VA, Golubkova EV (2007) Protection study ogf grounwaters by isotopic and hydrochemical data. Prospect Prot of Miner Resour 5:48–52Google Scholar
  130. Polyakov VA, Seletsky YuB (1978) Radiocarbon and tritium study of groundwater dynamics in the Assel-Kliasinan aquifer at Sudogda River region. Geokhimiya 8:1230–1238Google Scholar
  131. Radnell CL, Aitken MJ, Otlet RL (1979) In situ 14C production in wood. In: Berger R, Suess HE (eds) Radiocarbon dating. University of California Press, Berkely, pp 643–650Google Scholar
  132. Rafter TA, O’Brien BJ (1972) C-14 measurements in the atmosphere and in the South Pacific Ocean. In: Proceedings of the 8th international conf. radiocarbon dating, Lower Hutt, Wellington, p 241Google Scholar
  133. Ralf EK (1972) A cyclic solution for the relationship between magnetic and atmospheric C-14 changes. In: Proc. 8th Intern conf. radiocarbon dating. Lower Hutt, Wellington, pp 76–84Google Scholar
  134. Ralf EK, Klein J (1979) Composite computer plots of 14C dates for treering-dated Bristlecone Pine and Sequoies. In: Radiocarbon dating. University of California Press, Berkely, pp 545–553Google Scholar
  135. Ravoire I, Lorius C, Robert J, Roth E (1970) Tritium content in a firn core from Antarctica. J Geophys Res 75:2331–2336Google Scholar
  136. Roether W, Münnich KO, Östlund HE (1970) Tritium profile at the North Pacific (1969) Geosecs intercalibration station. J Geophys Res 75:7672–7675Google Scholar
  137. Roether W, Münnich KO, Ribbat B, Sarmiento JL (1980) A transatlantic 14C section near 40 °N of F/S Meteor. Ergebnisse A 21:57–69Google Scholar
  138. Romanov VV (1978) Regularities in tritium distribution for natural waters. In: Ferronsky VI (ed) Isotopy of natural waters. Nauka, Moskva, pp 46–89Google Scholar
  139. Romanov VV (1982) Tritium use in study of marine and river water mixing. Water Res 5:22–26Google Scholar
  140. Romanov VV, Kikichev HG (1979) Tririum in atmospheric hydrogen. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 85–92Google Scholar
  141. Romanov VV, Salnova LV, Seryegina LA (1979) Tritium use in studying dynamics of the Baykal Lake waters. In: Ferronsky VI (ed) Isotope sdudies of natural waters. Nauka, Moskva, pp 46–54Google Scholar
  142. Rooth CG, Östlund HE (1972) Penetration of tritium into the Atlantic thermocline. Deep-sea res 19:481–492Google Scholar
  143. Rowland FS (1959) Ratio of HT/HTO in the atmosphere. J Chem Phys 30:1098–1099Google Scholar
  144. Schell WR (1970) Investigation and comparison of radiogenic argon, tritium and C-14 in atmospheric reservoir. In: Radiocarbon variations and absolute chronology, XII nobel symp. Wiley, NY, pp 447–466Google Scholar
  145. Schell WR, Sauzay G (1970) Global sampling and analysis of tritium and stable isotopes. In: Report to panel on procedures for establisching limits for radionuclides in the sea, IAEA, ViennaGoogle Scholar
  146. Schell WR, Sauzay G, Payne B (1970) Tritium injections and concentration distribution in the atmosphere. J Geophy Res 75:2251–2266Google Scholar
  147. Schmidt U (1974) Molecular hydrogen in the atmosphere. Tellus 26:78–90Google Scholar
  148. Schlosser P, Stute M, Sonntag C, Münnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Latt 89:353–368Google Scholar
  149. Schlosser P, Shapiro SD, Stute M (2000) Tritium/3He measurements in young groundwater: progress in applications to complex hydrological systems. In: Tracers and modelling in hydrogeology: proc intern conf, IASH Liege, pp 481–486Google Scholar
  150. Scholz TG, Ehhalt DH, Heidt LE, Martell EA (1970) Water vapour, molecular hydrogen, methane and tritium concentrations near the stratopause. J Geophys Res 75:3049–3054Google Scholar
  151. Sehgal BR, Remport HH (1971) Tritium production in fast reactors, containing B4C. Trans Amer Nucl Soc 14:779–780Google Scholar
  152. Seletsky Yu B, Nechaev VI, Polyakov VA (1979) Radiocarbon as an indicator of groundwater recharge and discharge location. In. In: Ferronsky VI (ed) Isotope studies of natural waters. Nauka, Moskva, pp 111–121Google Scholar
  153. Singer SF (1958) The primery cosmic radiation and its time variations. Prog Cosm Ray Phys 4:205–335Google Scholar
  154. Sobotovich EV, Bondarenko GN, Vetshtein VE et al (1977) Isotope and geochemical estimates of a degree of surface and groundwater interconnection. Naukova Dumka, KievGoogle Scholar
  155. Sokolovsky LG, Polyakov VA, Golubkova EV (2007) Light isotopes of waters of the Asdov-Kuban artesian basin: Conditions of formation and balneological significance. Prospect Protect Miner Resour 5:44–47Google Scholar
  156. Sorokhtin OG (2002) Green house effect: myth and reality. Inf Analit Vest, Rus Center, No 1, Moskva, pp 27–28Google Scholar
  157. Stenhause MJ, Baxter MS (1979) The uptake of bomb 14C in humans. In: Radiocarbon dating. University. California Press, Berkely, pp 324–341Google Scholar
  158. Sternberg RS, Damon PE (1979) Sensitivity of radiocarbon fluctuations and inventory to geomagnetic and reservoir parameters. In: Radiocarbon dating. University of California Press, Berkely, p 691Google Scholar
  159. Stewart GL (1965) Experinces using tritium in scientific hydrology. In: Radiocarbon and tritium dating: proceedings of the 6th intern. conf., USAEC, Washington, pp 645–658Google Scholar
  160. Stiel G, Haendel D, Runge A et al (1979) Isotopenverhältnisse und hydrogeologischen Praxis sowie in der Umwelt. Zeits Ang Geol 25:9–14Google Scholar
  161. Stuiver M (1965) Carbon-14 content of 18th and 19th century wood: variations correlated with sunshot activity. Science 149:533–535Google Scholar
  162. Stuiver M (1980) 14C distribution in the Atlantic ocean. J Geophys Res 85:2711–2718Google Scholar
  163. Stuiver M, Quay PD (1981) Atmospheric 14C change resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci Lett 53:349–362Google Scholar
  164. Suess HE (1969) Tritium geophysics as an international research project. Science 163:1705–1410Google Scholar
  165. Suess HE (1970) The three causes of the secular C-14 fluctuations, their amplitudes and time constants. In: Radiocarbon variations and absolute chronology, XII nobel symp. Wiley, New York, pp 595–605Google Scholar
  166. Suess HE (1979) A calibration table for conventional radiocarbon dates. In: Radiocarbon dating. University of California, Berkely, pp 777–784Google Scholar
  167. Sulerzhitsky LD, Forova VS (1966) Radiocarbon in woods from the modern volcanous areas. Dokl. AN UzbSSR 6:1421–1423Google Scholar
  168. Taylor CR (1968) A comparison of tritium and strontium-90 in fallout in the Southern hemisphere. Tellus 20:559–576Google Scholar
  169. Taylor JR, Pefers FE (1972) Tritium transport in LMFBR’s. Trans. Am Nucl Soc 15:431–432Google Scholar
  170. Thatcher LL, Payne BR (1965) The distribution of tritium in precipitation over continents and its significance to groundwater dating. In: Radiocarbon and t6ritium dating. Proceedings of the 6th intern conf, USAEC, Washington, pp 604–629Google Scholar
  171. Theodorsson P (1967) Natural tritium in groundwater studies. In: Isotope hydrology: proceedings of a symp, IAEA, Vienna, pp 371–380Google Scholar
  172. Tokarev I, Zubkov AA, Rumynin VG et al (2005) Origin of high 234U/238U ratio in post-permafrost aquifer. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment, mining impact and consequences. Springer, New York, pp 854–863Google Scholar
  173. Tolstikhin IN, Kamensky IL (1969) Determination of of groundwater age by the T-3He method. Geochen Int 6:810–811Google Scholar
  174. Van Hook WA (1968) Condensed Phase Isotope Effects. Isotopenpraxis 5:161–169Google Scholar
  175. Verhagen BTh, Smith PE, McGregore I et al (1979) Tritium profiles in Kalachari sands as a measure of rain-water recharge. In: Isotope hydrology 1978: proceedings of a symp, vol 2, IAEA, Vienna, pp 733–749Google Scholar
  176. Vlasova LS, Brezgunov VS (1978) The distribution of hydrogen and oxygen isotopic composition in natural brines by model calculations. In: Ferronsky VI (ed) Isotope study of natural waters. Nauka, Moskva, pp 119–139Google Scholar
  177. Webber W (1967) The spectrum and charge composition of the primary cosmic radiation. Encycl Phys 46:181Google Scholar
  178. Weiss W, Roether W (1975) Der Tritium abfluss des Rheins 1961–1973. Dt. Gewasser Kd Mitt 19:1–10Google Scholar
  179. Weiss W, Bullacher J, Roether W (1979) Evidence of pulsed discharge of tritium from nuclear energy installations in Central European precipitation. In: Behaviour of tritium in the environment: proceedings of a symp, IAEA, Vienna, pp 17–30Google Scholar
  180. Wendland WM, Donley DL (1971) Radiocarbon calendar age relationship. Earth Plane Sci Lett 11:135–139Google Scholar
  181. Yang A, Fairhall AW (1972) Variations of natural radiocarbon during the last 2000 years and geophysical mechanism for producing them. In: Proceedings of the 8th intern conf on radiocarbon datin. Lower Hutt, Wellington, pp A44–A54Google Scholar
  182. Young JA, Wogman NA, Thomas CW, Perkins R (1970) Short lived cosmic ray produced radionuclides as tracers of atmospheric processes. In: Radionuclides in the environment. Adv Chem Ser No 93, Am Chem Soc, Washington, pp 506–521Google Scholar
  183. Zavelsky FS (1968) One more clarification to radiocarbon method Dokl. AN SSSR 180:1189–1192Google Scholar
  184. Zlobina VL, Kovalevsky VS, Morkovkina IK et al (1980) On the use of helium and tritium mapping for groundwater recharge study. Water Res 1:166–170Google Scholar
  185. Zuber A (1994) On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifer. In: Mathematical models and their application to isotope studies in groundwater hydrology, IAEA, Vienna, pp 11–41Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Water Problems Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations