Skip to main content

On Quadratic Expansions of Log-Likelihoods and a General Asymptotic Linearity Result

  • Chapter
  • First Online:

Abstract

Irrespective of the statistical model under study, the derivation of limits, in the Le Cam sense, of sequences of local experiments (see, e.g., Jeganathan, Econometric Theory 11:818–887, 1995 and Strasser, Mathematical Theory of Statistics: Statistical experiments and asymptotic decision theory, Walter de Gruyter, Berlin, 1985) often follows along very similar lines, essentially involving differentiability in quadratic mean of square roots of (conditional) densities. This chapter establishes two abstracts but quite generally applicable results providing sufficient, and nearly necessary, conditions for (i) the existence of a quadratic expansion and (ii) the asymptotic linearity of local log-likelihood ratios. Asymptotic linearity is needed, for instance, when unspecified model parameters are to be replaced, in some statistic of interest, with some preliminary estimators. Such results have been established, for locally asymptotically normal (LAN) models involving independent and identically distributed observations, by, e.g., Bickel et al. (Efficient and adaptive Estimation for semiparametric Models, Johns Hopkins University Press, Baltimore, 1993), van der Vaart (Statistical Estimation in Large Parameter Spaces, CWI, Amsterdam, 1988; Asymptotic Statistics, Cambridge University Press, Cambridge, 2000). Similar results are provided here for models exhibiting serial dependencies which, so far, have been treated on a case-by-case basis (see Hallin and Paindaveine, Journal of Statistical Planning and Inference 136:1–32, 2005 and Hallin and Puri, Journal of Multivariate Analysis 50:175–237, 1994 for typical examples) and, in general, under stronger regularity assumptions. Unlike their i.i.d. counterparts, our results are established under LAQ conditions, hence extend beyond the context of LAN experiments, so that nonstationary unit-root time series and cointegration models, for instance, also can be handled (see Hallin et al., Optimal pseudo-Gaussian and rank-based tests of the cointegrating rank in semiparametric error-correction models, 2013).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akharif, A., & Hallin, M. (2003). Efficient detection of random coefficients in autoregressive models. Annals of Statistics, 31, 675–704.

    Article  MATH  MathSciNet  Google Scholar 

  • Akritas, M. G., & Johnson, R. A. (1982). Efficiencies of tests and estimators in autoregressions under nonnormal error distribution. Annals of the Institute of Statistical Mathematics, 34, 579–589.

    Article  MATH  MathSciNet  Google Scholar 

  • Basawa, I. V., & Brockwell, P. J. (1984). Asymptotic conditional inference for regular nonergodic models with an application to autoregressive processes. Annals of Statistics, 12, 161–171.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, D., & Basu, A. K. (2006). Local asymptotic minimax risk bounds in a locally asymptotically mixture of normal experiments under asymmetric loss. In Optimality: The Second Erich L. Lehmann Symposium. IMS Lecture Notes-Monograph Series (Vol. 49, pp. 312–321).

    Google Scholar 

  • Bickel, P. J., Klaassen, C. A. J., Ritov, Y., & Wellner, J. A. (1993). Efficient and adaptive estimation for semiparametric models. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Boswijk, H. P. (2000). Mixed normality and ancillarity in \(I(2)\) systems. Econometric Theory, 16, 878–904.

    Article  MATH  MathSciNet  Google Scholar 

  • Davies, R. B. (1985). Asymptotic inference when the amount of information is random. In L. M. Le Cam, R. A. Olshen (Eds.), Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (Vol. 2). Belmont: Wadsworth

    Google Scholar 

  • Drost, F. C., Klaassen, C. A. J., & Werker, B. J. M. (1997). Adaptive estimation in time series models. Annals of Statistics, 25, 786–818.

    Article  MATH  MathSciNet  Google Scholar 

  • Garel, B., & Hallin, M. (1995). Local asymptotic normality of multivariate ARMA processes with a linear trend. Annals of the Institute of Statistical Mathematics, 47, 551–579.

    MATH  MathSciNet  Google Scholar 

  • Greenwood, P. E., & Wefelmeyer, W. (1993). Asymptotic minimax results for stochastic process families with critical points. Stochastic Processes and Their Applications, 44, 107–116.

    Article  MATH  MathSciNet  Google Scholar 

  • Gushchin, A. A. (1996). Asymptotic optimality of parameter estimators under the LAQ condition. Theory of Probability and Its Applications, 40, 261–272.

    Article  MathSciNet  Google Scholar 

  • Hájek, J. (1970). A characterization of limiting distributions of regular estimates. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 14, 323–330.

    Article  MATH  Google Scholar 

  • Hájek, J. (1972). Local asymptotic minimax and admissibility in estimation. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics (pp. 175–194). Berkeley: University of California Press.

    Google Scholar 

  • Hall, P., & Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.

    MATH  Google Scholar 

  • Hallin, M., & Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an elliptic VARMA model. Annals of Statistics, 32, 2642–2678.

    Google Scholar 

  • Hallin, M., & Paindaveine, D. (2005). Asymptotic linearity of serial and nonserial multivariate signed rank statistics. Journal of Statistical Planning and Inference, 136, 1–32.

    Article  MathSciNet  Google Scholar 

  • Hallin, M., & Puri, M. L. (1994). Aligned rank tests for linear models with autocorrelated errors. Journal of Multivariate Analysis, 50, 175–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin, M., & Serroukh, A. (1998). Adaptive estimation of the lag of a long-memory process. Statistical Inference for Stochastic Processes, 1, 111–129.

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin, M., Taniguchi, M., Serroukh, A., & Choy, K. (1999). Local asymptotic normality for regression models with long-memory disturbance. Annals of Statistics, 26, 2054–2080.

    MathSciNet  Google Scholar 

  • Hallin, M., van den Akker, R., & Werker, B. J. M. (2011). A class of simple distribution-free rank-based unit root tests. Journal of Econometrics, 163, 200–214.

    Article  MathSciNet  Google Scholar 

  • Hallin, M., van den Akker, R., & Werker, B. J. M. (2013). Optimal pseudo-Gaussian and rank-based tests of the cointegrating rank in semiparametric error-correction models, available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2320810

  • Hirukawa, J., & Taniguchi, M. (2006). LAN theorem for non-Gaussian locally stationary processes and its applications. Journal of Statistical Planning and Inference, 136, 640–688.

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov, I. A., & Has’minskii, R. S. (1981). Statistical estimation: Asymptotic theory. Application of Mathematics (Vol. 16). New York: Springer.

    Google Scholar 

  • Janssen, A. (1991). Asymptotically linear and mixed normal sequences of statistical experiments, Sankhy \(\bar{a}\) : Series A, 53, 1–26.

    Google Scholar 

  • Janssen, A., Milbrodt, H., & Strasser, H. (1985). Infinitely divisible statistical experiments. Lecture Notes in Statistics. New York: Springer.

    Google Scholar 

  • Jansson, M. (2008). Semiparametric power envelopes for tests of the unit root hypothesis. Econometrica, 76, 1103–1142.

    Article  MATH  MathSciNet  Google Scholar 

  • Jeganathan, P. (1981). On a decomposition of the limit distribution of a sequence of estimators. Sankhy \(\bar{a}\) : Series A, 43, 26–36.

    Google Scholar 

  • Jeganathan, P. (1982). On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhy \(\bar{a}\) : Series A, 44, 173–212.

    Google Scholar 

  • Jeganathan, P. (1983). Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhy \(\bar{a}\) : Series A, 45, 66–87.

    Google Scholar 

  • Jeganathan, P. (1995). Some aspects of asymptotic theory with applications to time series models. Econometric Theory, 11, 818–887.

    Article  MathSciNet  Google Scholar 

  • Koul, H. L., & Schick, A. (1996). Adaptive estimation in a random coefficient autoregressive model. Annals of Statistics, 24, 1025–1052.

    Article  MATH  MathSciNet  Google Scholar 

  • Koul, H. K., & Schick, A. (1997). Efficient estimation in nonlinear autoregressive time-series models. Bernoulli, 3, 247–277.

    Article  MATH  MathSciNet  Google Scholar 

  • Kreiss, J.-P. (1987). On adaptive estimation in stationary ARMA processes. Annals of Statistics, 15, 112–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Kreiss, J.-P. (1990). Testing linear hypotheses in autoregressions. Annals of Statistics, 18, 1470–1482.

    Article  MATH  MathSciNet  Google Scholar 

  • Kutoyants, Y. (1984). Parameter estimation for diffusion type processes of observations. Mathematische Operationsforschung und Statistik. Series Statistics, 15, 541–551.

    MATH  MathSciNet  Google Scholar 

  • Kutoyants, Y. (1994). Identification of dynamical systems with small noise. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Kutoyants, Yu. A. (2004). Statistical inference for Ergodic diffusion processes. London: Springer Series in Statistics.

    Google Scholar 

  • Lee, S., & Taniguchi, M. (2005). Asymptotic theory for ARCH-SM models: LAN and residual empirical processes. Statistica Sinica, 15, 215–234.

    MATH  MathSciNet  Google Scholar 

  • Le Cam, L. (1960). Locally asymptotically normal families of distributions. University of California Publications in Statistics, 3, 27–98.

    Google Scholar 

  • Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. New York: Springer.

    Google Scholar 

  • Le Cam, L., & Yang, G. L. (1990). Asymptotics in Statistics—Some basic concepts. New York: Springer.

    Google Scholar 

  • Linton, O. (1993). Adaptive estimation in ARCH models. Econometric Theory, 9, 539–569.

    Article  MathSciNet  Google Scholar 

  • Lin, N., & Lototsky, S. V. (2013). Second-order continuous-time non-stationary Gaussian autoregression, forthcoming. Statistical Inference for Stochastic Processes.

    Google Scholar 

  • Phillips, P. C. B. (1991). Optimal inference in cointegrated systems. Econometrica, 59, 283–306.

    Article  MATH  MathSciNet  Google Scholar 

  • Pollard, D. (1997). Another look at differentiability in quadratic mean. In D. Pollard, E. Torgersen, & G. L. Yang (Eds.), Festschrift for Lucien Le Cam: Research papers in probability and statistics (pp. 305–314). New York: Springer.

    Chapter  Google Scholar 

  • Roussas, G. G. (1965). Asymptotic inference in Markov processes. Annals of Mathematical Statistics, 36, 978–992.

    Article  MATH  MathSciNet  Google Scholar 

  • Roussas, G. G. (1979). Asymptotic distribution of the log-likelihood function for stochastic processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 47, 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Shiryaev, A. N., & Spokoiny, V. G. (2000). Statistical experiments and decisions: Asymptotic theory. Advanced Series on Statistical Science & Applied Probability (Vol. 8). River Edge: World Scientific.

    Google Scholar 

  • Strasser, H. (1985). Mathematical theory of statistics: Statistical experiments and asymptotic decision theory. Berlin: Walter de Gruyter.

    Book  MATH  Google Scholar 

  • Swensen, A. R. (1985). The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend. Journal of Multivariate Analysis, 16, 54–70.

    Article  MATH  MathSciNet  Google Scholar 

  • Taniguchi, M., & Kakizawa, Y. (2000). Asymptotic Theory of Statistical inference for time series. Springer Series in Statistics. New York: Springer.

    Google Scholar 

  • Torgersen, E. (1991). Comparison of statistical experiments. Encyclopedia of Mathematics and Its Applications (Vol. 36). Cambridge: Cambridge University Press.

    Google Scholar 

  • van der Vaart, A. W. (1988). Statistical Estimation in Large Parameter Spaces. CWI Tract 44. Amsterdam: CWI.

    Google Scholar 

  • van der Vaart, A. W. (1991). An asymptotic representation theorem. International Statistical Review, 59, 97–121.

    Google Scholar 

  • van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

The research of Marc Hallin is supported by the Belgian Science Policy Office (2012–2017) Interuniversity Attraction Poles and a crédit aux chercheurs of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hallin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hallin, M., van den Akker, R., Werker, B.J.M. (2015). On Quadratic Expansions of Log-Likelihoods and a General Asymptotic Linearity Result. In: Hallin, M., Mason, D., Pfeifer, D., Steinebach, J. (eds) Mathematical Statistics and Limit Theorems. Springer, Cham. https://doi.org/10.1007/978-3-319-12442-1_9

Download citation

Publish with us

Policies and ethics