Advertisement

Sensorless PMSM Speed Control Based on NN Adaptive Observer

  • Longhu Quan
  • Zhanshan Wang
  • Xiuchong Liu
  • Mingguo Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8866)

Abstract

The AC motor control by neural networks includes the reconstruction errors in a certain degree, which can cause the non-convergence in the control results. To learn the complete system dynamics of the sensorless PMSM, a neural network adaptive speed control strategy is proposed to eliminate the NN reconstruction errors. A robust modification term, which is a function of estimation error and an additional tunable parameter, is introduced to guarantee the asymptotic stability of the speed estimation. A rotor-flux-oriented vector control is employed as the basic control strategy for the sensorless PMSM drive system. The simulation results demonstrated the validity and feasibility of the proposed control strategy.

Keywords

Neural network adaptive speed control Permanent magnet synchronous motor (PMSM) NN reconstruction error Robust modification term Speed estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schroedl, M.: An improved position estimator for sensorless control permanent magnet synchronous motor. In: EPE 1991, Florence, Italy, vol. 3, pp. 418–423 (1991)Google Scholar
  2. 2.
    Babak, N.M., Farid, M.T., Sargos, F.M.: Mechanical sensorless control of PMSM with online estimation of stator resistance. IEEE Trans. Ind. Appl. 40(2), 457–471 (2004)CrossRefGoogle Scholar
  3. 3.
    Kowalska, T.O., Dybkowski, M.: Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive. IEEE Trans. Ind. Electron. 57(4), 1296–1308 (2010)CrossRefGoogle Scholar
  4. 4.
    Bolognani, S., Oboe, R., Zigliotto, M.: Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position. IEEE Trans. Ind. Electron. 46, 184–308 (1999)CrossRefGoogle Scholar
  5. 5.
    Sun, X.D., Chen, L., Yang, Z.B., Zhu, H.Q.: Speed-Sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans. Mech. 18(4), 1357–1366 (2013)CrossRefGoogle Scholar
  6. 6.
    Shady, M.G., Damian, G., John, W.F.: Stator current model reference adaptive systems speed estimator for regenerating-mode low-speed operation of sensorless induction motor drives. IET Electr. Power Appl. 7(7), 597–606 (2013)CrossRefGoogle Scholar
  7. 7.
    Miroslaw, W., Zbigniew, K., Jarosław, G., Haithem, A., Toliyat, H.A.: Artificial-neural-network-based sensorless nonlinear control of induction motors. IEEE Trans. Ener. Con. 20(3), 520–528 (2005)CrossRefGoogle Scholar
  8. 8.
    Accetta, A., Cirrincione, M., Pucci, M.: TLS EXIN based neural sensorless control of a high dynamic PMSM. Con. Eng. Prac. 20, 725–732 (2012)CrossRefGoogle Scholar
  9. 9.
    Batzel, T.D., Lee, K.Y.: An approach to sensorless operation of the permanent-magnet synchronous motor using diagonally recurrent neural networks. IEEE Trans. Ener. Con. 18(1), 100–106 (2003)CrossRefGoogle Scholar
  10. 10.
    Wang, L.M., Li, X.B.: Position sensorless control for PMLSM using Elman neural network. Rec. IEEE IAS Annu. Meeting 4, 1–4 (2009)Google Scholar
  11. 11.
    Shady, M.G., Damian, G., John, W.F.: Stator current model reference adaptive systems speed estimator for regenerating-mode low-speed operation of sensorless induction motor drives. IET Electr. Power Appl. 7(7), 597–606 (2012)Google Scholar
  12. 12.
    Jagannathan, S.: Neural network control of nonlinear discrete-time systems. CRC Press (2006)Google Scholar
  13. 13.
    Dierks, T., Thumati, B.T., Jagannathan, S.: Adaptive dynamic programming based optimal control of unknown affine nonlinear discrete-time systems. In: Proceedings of the IEEE Inter. J. Con. Neu. Net. (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Longhu Quan
    • 1
  • Zhanshan Wang
    • 1
  • Xiuchong Liu
    • 1
  • Mingguo Zheng
    • 2
  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.College of Information Science and TechniqueKimchaek UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations