Skip to main content

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 15))

Abstract

Cytochrome c oxidase (CcO) is the terminal oxidase of cell respiration which reduces molecular oxygen (O2) to H2O coupled with the proton pump. For elucidation of the mechanism of CcO, the three-dimensional location and chemical reactivity of each atom composing the functional sites have been extensively studied by various techniques, such as crystallography, vibrational and time-resolved electronic spectroscopy, since the X-ray structures (2.8 Å resolution) of bovine and bacterial CcO have been published in 1995.

X-ray structures of bovine CcO in different oxidation and ligand binding states showed that the O2 reduction site, which is composed of Fe (heme a 3) and Cu (CuB), drives a non-sequential four-electron transfer for reduction of O2 to water without releasing any reactive oxygen species. These data provide the crucial structural basis to solve a long-standing problem, the mechanism of the O2 reduction.

Time-resolved resonance Raman and charge translocation analyses revealed the mechanism for coupling between O2 reduction and the proton pump: O2 is received by the O2 reduction site where both metals are in the reduced state (R-intermediate), giving the O2-bound form (A-intermediate). This is spontaneously converted to the P-intermediate, with the bound O2 fully reduced to 2 O2−. Hereafter the P-intermediate receives four electron equivalents from the second Fe site (heme a), one at a time, to form the three intermediates, F, O, and E to regenerate the R-intermediate. Each electron transfer step from heme a to the O2 reduction site is coupled with the proton pump.

X-ray structural and mutational analyses of bovine CcO show three possible proton transfer pathways which can transfer pump protons (H) and chemical (water-forming) protons (K and D). The structure of the H-pathway of bovine CcO indicates that the driving force of the proton pump is the electrostatic repulsion between the protons on the H-pathway and positive charges of heme a, created upon oxidation to donate electrons to the O2 reduction site. On the other hand, mutational and time-resolved electrometric findings for the bacterial CcO strongly suggest that the D-pathway transfers both pump and chemical protons. However, the structure for the proton-gating system in the D-pathway has not been experimentally identified. The structural and functional diversities in CcO from various species suggest a basic proton pumping mechanism in which heme a pumps protons while heme a 3 reduces O2 as proposed in 1978.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ferguson-Miller, G. T. Babcock, Chem. Rev. 1996, 96, 2889–2908.

    Article  CAS  PubMed  Google Scholar 

  2. S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, Annu. Rev. Biophys. 2011, 40, 205–223.

    Article  CAS  PubMed  Google Scholar 

  3. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  4. S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660–669.

    Article  CAS  PubMed  Google Scholar 

  5. C. Ostermeier, A. Harrenga, U. Ermler, H. Michel, Proc. Natl. Acad. Sci. USA 1997, 94, 10547–10553.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. M. Svensson-Ek, J. Abramson, G. Larsson, S. Törnroth, P. Brzezinski, S. Iwata, J. Mol. Biol. 2002, 321, 329–339.

    Article  CAS  PubMed  Google Scholar 

  7. J. Abramson, S. Riistama, G. Larsson, A. Jasaitis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, S. Iwata, M. Wikström, Nat. Struct. Biol. 2000, 7, 910–917.

    Article  CAS  PubMed  Google Scholar 

  8. J. A. Lyons, D. Aragão, O. Slattery, A. V Pisliakov, T. Soulimane, M. Caffrey, Nature 2012, 487, 514–518.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. T. Tiefenbrunn, W. Liu, Y. Chen, V. Katritch, C. D. Stout, J. A. Fee, V. Cherezov, PLoS One 2011, 6, e22348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, H. Michel, Science 2010, 329, 327–330.

    Article  CAS  PubMed  Google Scholar 

  11. E. Yakushiji, K. Okunuki, Proc. Impact Acad. Japan 1941, 17, 205–223.

    Google Scholar 

  12. T. Yonetani, S. Takemori, I. Sekuzu, K. Okunuki, Nature 1958, 181, 1339–1340.

    Article  CAS  PubMed  Google Scholar 

  13. T. Yonetani, J. Biol. Chem. 1961, 236, 1680–1688.

    CAS  PubMed  Google Scholar 

  14. B. Kadenbach, M. Ungibauer, J. Jarausch, U. Buge, L. Kuhn-Nentwig, Trends Biochem. Sci. 1983, 8, 398–400.

    Article  CAS  Google Scholar 

  15. W. S. Caughey, G. A. Smythe, D. H. O’Keeffe, J. E. Maskasky, M. I. Smith, J. Biol. Chem. 1975, 250, 7602–7622.

    CAS  PubMed  Google Scholar 

  16. E. Yamashita, H. Aoyama, M. Yao, K. Muramoto, K. Shinzawa-Itoh, S. Yoshikawa, T. Tsukihara, Acta Crystallogr. D. Biol. Crystallogr. 2005, 61, 1373–1377.

    Article  PubMed  Google Scholar 

  17. P. M. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1988, 242, 70–74.

    Article  CAS  PubMed  Google Scholar 

  18. K. Shinzawa-Itoh, H. Aoyama, K. Muramoto, H. Terada, T. Kurauchi, Y. Tadehara, A. Yamasaki, T. Sugimura, S. Kurono, K. Tsujimoto, T. Mizushima, E. Yamashita, T. Tsukihara, S. Yoshikawa, EMBO J. 2007, 26, 1713–1725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. W. S. Caughey, W. J. Wallace, J. A. Volpe, S. Yoshikawa, in Oxidation-Reduction, Part C, Vol. 13 of The Enzymes, 3rd edn., Ed P. D. Boyer, Academic Press, New York, 1976, pp. 299–344.

    Google Scholar 

  20. W. T. Potter, M. P. Tucker, R. A. Houtchens, W. S. Caughey, Biochemistry 1987, 26, 4699–4707.

    Article  CAS  PubMed  Google Scholar 

  21. Q. H. Gibson, C. Greenwood, Biochem. J. 1963, 86, 541–554.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. T. Ogura, S. Takahashi, K. Shinzawa-Itoh, S. Yoshikawa, T. Kitagawa, J. Am. Chem. Soc. 1990, 112, 5630–5631.

    Article  CAS  Google Scholar 

  23. S. W. Han, Y. C. Ching, D. L. Rousseau, Proc. Natl. Acad. Sci. USA 1990, 87, 2491–2495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. C. Varotsis, W. H. Woodruff, G. T. Babcock, J. Am. Chem. Soc. 1989, 111, 6439–6440.

    Article  CAS  Google Scholar 

  25. T. Ogura, S. Hirota, D. A. Proshlyakov, K. Shinzawa-Itoh, J. Am. Chem. Soc. 1996, 118, 5443–5449.

    Article  CAS  Google Scholar 

  26. T. Ogura, S. Takahashi, S. Hirota, K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman, T. Kitagawa, J. Am. Chem. Soc. 1993, 115, 8527–8536.

    Article  CAS  Google Scholar 

  27. J. P. Collman, C. J. Sunderland, K. E. Berg, M. A. Vance, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 6648–9.

    Article  CAS  PubMed  Google Scholar 

  28. D. A. Proshlyakov, M. A. Pressler, G. T. Babcock, Proc. Natl. Acad. Sci. USA 1998, 95, 8020–8025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. T. Ogura, T. Kitagawa, Biochim. Biophys. Acta 2004, 1655, 290–297.

    Article  CAS  PubMed  Google Scholar 

  30. D. A. Proshlyakov, M. A. Pressler, C. DeMaso, J. F. Leykam, D. L. DeWitt, G. T. Babcock, Science 2000, 290, 1588–1591.

    Article  CAS  PubMed  Google Scholar 

  31. M. A. Yu, T. Egawa, K. Shinzawa-Itoh, S. Yoshikawa, V. Guallar, S.-R. Yeh, D. L. Rousseau, G. J. Gerfen, J. Am. Chem. Soc. 2012, 134, 4753–4761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. A. Sucheta, K. E. Georgiadis, O. Einarsdóttir, Biochemistry 1997, 36, 554–565.

    Article  CAS  PubMed  Google Scholar 

  33. A. Sucheta, I. Szundi, O. Einarsdóttir, Biochemistry 1998, 37, 17905–17914.

    Article  CAS  PubMed  Google Scholar 

  34. I. Szundi, G. L. Liao, O. Einarsdóttir, Biochemistry 2001, 40, 2332–2339.

    Article  CAS  PubMed  Google Scholar 

  35. O. Einarsdóttir, I. Szundi, N. Van Eps, A. Sucheta, J. Inorg. Biochem. 2002, 91, 87–93.

    Article  PubMed  Google Scholar 

  36. N. Van Eps, I. Szundi, O. Einarsdóttir, Biochemistry 2003, 42, 5065–5073.

    Article  PubMed  Google Scholar 

  37. K. Muramoto, K. Ohta, K. Shinzawa-Itoh, K. Kanda, M. Taniguchi, H. Nabekura, E. Yamashita, T. Tsukihara, S. Yoshikawa, Proc. Natl. Acad. Sci. USA 2010, 107, 7740–7745.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. W. H. Woodruff, O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, D. S. Kliger, Proc. Natl. Acad. Sci. USA 1991, 88, 2588–2592.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. J. O. Alben, P. P. Moh, F. G. Fiamingo, R. A. Altschuld, Proc. Natl. Acad. Sci. USA 1981, 78, 234–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. J. P. Collman, C. J. Sunderland, R. Boulatov, Inorg. Chem. 2002, 41, 2282–2291.

    Article  CAS  PubMed  Google Scholar 

  41. J. P. Collman, R. A. Decréau, C. J. Sunderland, Chem. Commun. 2006, 3894–3896.

    Google Scholar 

  42. J. P. Collman, N. K. Devaraj, R. A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T. A. Eberspacher, C. E. D. Chidsey, Science 2007, 315, 1565–1568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. J. P. Collman, S. Ghosh, A. Dey, R. A. Decréau, Y. Yang, J. Am. Chem. Soc. 2009, 131, 5034–5035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Z. Halime, M. T. Kieber-Emmons, M. F. Qayyum, B. Mondal, T. Gandhi, S. C. Puiu, E. E. Chufán, A. A. N. Sarjeant, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2010, 49, 3629–3645.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Z. Halime, H. Kotani, Y. Li, S. Fukuzumi, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2011, 108, 13990–13994.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. M. I. Verkhovsky, A. Jasaitis, M. L. Verkhovskaya, J. E. Morgan, M. Wikström, Nature 1999, 400, 480–483.

    Article  CAS  PubMed  Google Scholar 

  47. A. Jasaitis, M. I. Verkhovsky, J. E. Morgan, M. L. Verkhovskaya, M. Wikström, Biochemistry 1999, 38, 2697–2706.

    Article  CAS  PubMed  Google Scholar 

  48. D. Bloch, I. Belevich, A. Jasaitis, C. Ribacka, A. Puustinen, M. I. Verkhovsky, M. Wikström, Proc. Natl. Acad. Sci. USA 2004, 101, 529–533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. S. A. Siletsky, A. A. Konstantinov, Biochim. Biophys. Acta 2012, 1817, 476–488.

    Article  CAS  PubMed  Google Scholar 

  50. D. Zaslavsky, A. D. Kaulen, I. A. Smirnova, T. Vygodina, A. A. Konstantinov, FEBS Lett. 1993, 336, 389–393.

    Article  CAS  PubMed  Google Scholar 

  51. D. Zaslavsky, R. C. Sadoski, K. Wang, B. Durham, R. B. Gennis, F. Millett, Biochemistry 1998, 37, 14910–14916.

    Article  CAS  PubMed  Google Scholar 

  52. E. Pilet, A. Jasaitis, U. Liebl, M. H. Vos, Proc. Natl. Acad. Sci. USA 2004, 101, 16198–16203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. S. A. Siletsky, D. Han, S. Brand, J. E. Morgan, M. Fabian, L. Geren, F. Millett, B. Durham, A. A. Konstantinov, R. B. Gennis, Biochim. Biophys. Acta 2006, 1757, 1122–1132.

    Article  CAS  PubMed  Google Scholar 

  54. S. A. Siletsky, A. S. Pawate, K. Weiss, R. B. Gennis, A. A. Konstantinov, J. Biol. Chem. 2004, 279, 52558–52565.

    Article  CAS  PubMed  Google Scholar 

  55. V. Y. Artzatbanov, A. A. Konstantinov, V. P. Skulachev, FEBS Lett. 1978, 87, 180–185.

    Article  CAS  PubMed  Google Scholar 

  56. A. A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, R. B. Gennis, Proc. Natl. Acad. Sci. USA 1997, 94, 9085–9090.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. M. Wikström, M. I. Verkhovsky, G. Hummer, Biochim. Biophys. Acta 2003, 1604, 61–65.

    Article  PubMed  Google Scholar 

  58. V. R. I. Kaila, M. I. Verkhovsky, G. Hummer, M. Wikström, Proc. Natl. Acad. Sci. USA 2008, 105, 6255–6259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. S. Yang, Q. Cui, Biophys. J. 2011, 101, 61–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. T. Yamashita, G. A. Voth, J. Am. Chem. Soc. 2012, 134, 1147–1152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. G. Brändén, M. Brändén, B. Schmidt, D. A. Mills, S. Ferguson-Miller, P. Brzezinski, Biochemistry 2005, 44, 10466–10474.

    Article  PubMed  Google Scholar 

  62. A. Puustinen, M. Wikström, Proc. Natl. Acad. Sci. USA 1999, 96, 35–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. J. Qian, D. A. Mills, L. Geren, K. Wang, C. W. Hoganson, B. Schmidt, C. Hiser, G. T. Babcock, B. Durham, F. Millett, S. Ferguson-Miller, Biochemistry 2004, 43, 5748–5756.

    Article  CAS  PubMed  Google Scholar 

  64. M. Wikström, C. Ribacka, M. Molin, L. Laakkonen, M. Verkhovsky, A. Puustinen, Proc. Natl. Acad. Sci. USA 2005, 102, 10478–10481.

    Article  PubMed Central  PubMed  Google Scholar 

  65. J. Fetter, M. Sharpe, J. Qian, D. Mills, S. Ferguson-Miller, P. Nicholls, FEBS Lett. 1996, 393, 155–160.

    Article  CAS  PubMed  Google Scholar 

  66. J. R. Fetter, J. Qian, J. Shapleigh, J. W. Thomas, A. García-Horsman, E. Schmidt, J. Hosler, G. T. Babcock, R. B. Gennis, S. Ferguson-Miller, Proc. Natl. Acad. Sci. USA 1995, 92, 1604–1608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. D. A. Mills, B. Schmidt, C. Hiser, E. Westley, S. Ferguson-Miller, J. Biol. Chem. 2002, 277, 14894–14901.

    Article  CAS  PubMed  Google Scholar 

  68. I. Belevich, M. I. Verkhovsky, M. Wikström, Nature 2006, 440, 829–832.

    Article  CAS  PubMed  Google Scholar 

  69. P. R. Rich, A. Maréchal, J. R. Soc. Interface 2013, 10, 20130183.

    Article  PubMed Central  PubMed  Google Scholar 

  70. I. Belevich, E. Gorbikova, N. P. Belevich, V. Rauhamäki, M. Wikström, M. I. Verkhovsky, Proc. Natl. Acad. Sci. USA 2010, 107, 18469–18474.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. R. J. P. Williams, Nature 1995, 376, 643.

    Article  CAS  PubMed  Google Scholar 

  72. S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, T. Tsukihara, Science 1998, 280, 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  73. S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, Biochim. Biophys. Acta 2011, 1807, 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  74. T. Tsukihara, K. Shimokata, Y. Katayama, H. Shimada, K. Muramoto, H. Aoyama, M. Mochizuki, K. Shinzawa-Itoh, E. Yamashita, M. Yao, Y. Ishimura, S. Yoshikawa, Proc. Natl. Acad. Sci. USA 2003, 100, 15304–15309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. C. L. Perrin, Acc. Chem. Res. 1989, 22, 268–275.

    Article  CAS  Google Scholar 

  76. K. Kamiya, M. Boero, M. Tateno, K. Shiraishi, A. Oshiyama, J. Am. Chem. Soc. 2007, 129, 9663–9673.

    Article  CAS  PubMed  Google Scholar 

  77. M. Kubo, S. Nakashima, S. Yamaguchi, T. Ogura, M. Mochizuki, J. Kang, M. Tateno, K. Shinzawa-Itoh, K. Kato, S. Yoshikawa, J. Biol. Chem. 2013, 288, 30259–30269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. K. Shimokata, Y. Katayama, H. Murayama, M. Suematsu, T. Tsukihara, K. Muramoto, H. Aoyama, S. Yoshikawa, H. Shimada, Proc. Natl. Acad. Sci. USA 2007, 104, 4200–4205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. M. M. Pereira, F. L. Sousa, A. F. Veríssimo, M. Teixeira, Biochim. Biophys. Acta 2008, 1777, 929–934.

    Article  CAS  PubMed  Google Scholar 

  80. M. M. Pereira, F. L. Sousa, M. Teixeira, R. M. Nyquist, J. Heberle, FEBS Lett. 2006, 580, 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  81. H.-Y. Chang, J. Hemp, Y. Chen, J. A. Fee, R. B. Gennis, Proc. Natl. Acad. Sci. USA 2009, 106, 16169–16173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. P. V Argade, Y. C. Ching, M. Sassaroli, D. L. Rousseau, J. Biol. Chem. 1986, 261, 5969–5973.

    CAS  PubMed  Google Scholar 

  83. T. Egawa, H. J. Lee, H. Ji, R. B. Gennis, S.-R. Yeh, D. L. Rousseau, Anal. Biochem. 2009, 394, 141–143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. T. Egawa, S.-R. Yeh, D. L. Rousseau, PLoS One 2013, 8, e63669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1996, 272, 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  86. S. Yoshikawa, K. Muramoto, K. Shinzawa-Itoh, M. Mochizuki, Biochim. Biophys. Acta 2012, 1817, 579–589.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a Grant-in-Aid for the Global Center of Excellence Program (to S. Yoshikawa) and for Scientific Research (A) 2247012 (to S. Yoshikawa), each provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology, and supported by CREST. S. Yoshikawa is “Senior Visiting Scientist in the Riken Harima Institute”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yoshikawa .

Editor information

Editors and Affiliations

Abbreviations and Definitions

Abbreviations and Definitions

AN:

bis[3-(dimethylamino)propyl]amine

CcO:

cytochrome c oxidase

CL:

cardiolipin

DCCD:

dicyclohexylcarbodiimide

DCHIm:

1,5-dicyclohexylimidazole

DCU:

dicyclohexyl-N-acyl-urea

DMAP:

4-(dimethylamino)pyridine

D-pathway:

a proton transfer pathway including E242, connecting the negative side with the O2 reduction site

EPR:

electron paramagnetic resonance

FTIR:

Fourier transform infrared

K-pathway:

a proton transfer pathway including K319, connecting the negative side with the O2 reduction site via Y244

heme a :

one of the heme A irons of the A family cytochrome c oxidase, which is in a low-spin state and 6-coordinated in both, the oxidized and reduced states

heme a 3 :

one of the heme A irons of the A family cytochrome c oxidase, which is in a high-spin state and 5-coordinated in the reduced state; this is the site for O2 binding

heme b :

a low-spin heme B iron of bacterial cytochrome c oxidase and quinol oxidase

heme b 3 :

a heme B iron of the C family cytochrome c oxidase, which is in a high-spin state and 5-coordinated in the reduced state; this is the site for O2 binding

heme o 3 :

a heme O iron of bacterial quinol oxidase, which is in a high-spin state and 5-coordinated in the reduced state; this is the site for O2 binding

H-pathway:

a proton transfer pathway including R38 and D51, connecting the negative with the positive side

6LFe:

Cu-depleted form of complex 6LFeCu, see [45]. NMePr=N-methyl-2-propylimidazole-4carboamide, the substituent on o-position of tetraphenylporphyrin (the whole model complex is abbreviated as Fe/Cu[NMePr])

6LFeCu:

a tethered porphyrin complexed with iron and copper. The “6L” indicates that one end of the tethering group is located at the position 6 of one of the 3 pyridine groups coordinated to Cu

OMe:

2,6-di-tert-butyl-4-methoxyphenol

PE:

phosphatidylethanolamine

PG:

phospatidylglycerol

prp:

propionate

ROS:

reactive oxygen species

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

t-Bu:

2,4,6-tri-tert-butylphenol

THF:

tetrahydrofuran

TMPA:

tris(2-pyridylmethylamine)

TMPD:

tetramethyl-p-phenylenediamine

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yoshikawa, S., Shimada, A., Shinzawa-Itoh, K. (2015). Respiratory Conservation of Energy with Dioxygen: Cytochrome c Oxidase. In: Kroneck, P., Sosa Torres, M. (eds) Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-12415-5_4

Download citation

Publish with us

Policies and ethics