Skip to main content

Abstract

Oxygen has to be considered one of the most important elements on Earth. Earlier, some dispute arose as to which of the three scientists, Carl Wilhelm Scheele (Sweden), Joseph Priestley (United Kingdom) or Antoine Lavoisier (France), should get credit for the air of life.

Today it is agreed that the Swede discovered it first, the fire air in 1772. The British chemist published it first, the dephlogisticated air in 1775, and the Frenchman understood it first, the oxygen in 1775–1778. Surely, there is credit enough for all three to split the “Nobel Prize” awarded by Carl Djerassi and Roald Hoffmann in their play Oxygen. Molecular oxygen means life. So-called aerobes – these include humans, animals, and plants – need O2 to conserve the energy they have to gain from their environment. Eliminate O2 and these organisms cannot support an active lifestyle. What makes dioxygen that special? It is a non-metal and oxidizing agent that readily reacts with most elements to form compounds, notably oxides. From a biological point of view, the most important compound of course is water, H2O, which provides an excellent solvent for biomolecules. It influences the climate of the Earth, and it is the source of almost all of the molecular oxygen in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WebElements: the periodic table on the web – Oxygen; www.webelements.com

  2. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed, Butterworth-Heinemann, Oxford, UK, 1997.

    Google Scholar 

  3. A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, IUPAC. Marcel Dekker, New York, USA, 1985.

    Google Scholar 

  4. J. Emsley, Oxygen. Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, Oxford, UK, 2001, pp. 297–304.

    Google Scholar 

  5. R. Hoffmann, American Scientist 2004, 92, 23–26.

    Article  Google Scholar 

  6. P. Bert (first published in French in 1878, translated by M. A. Hitchcock, F. A. Hitchcock), Barometric Pressure: Researches in Experimental Physiology, College Book Company, Columbus, OH, USA, 1943.

    Google Scholar 

  7. D. N Patel, A. Goel, S. B. Agarwal, P. Garg, K. K Lakhani, J. Ind. Acad. Clin. Med. 2003, 4, 234–237.

    Google Scholar 

  8. D. L. Gilbert, Oxygen: An Overall Biological View, in Oxygen and Living Processes, Ed D. L. Gilbert, Springer-Verlag, New York, USA, 1981.

    Google Scholar 

  9. S. G. Jenkinson, New Horizons 1993, 1, 504–511.

    CAS  PubMed  Google Scholar 

  10. J. Lorrain Smith, J. Physiol. (London: The Physiological Society and Blackwell Publishing) 1899, 24, 19–35.

    Google Scholar 

  11. E. Meirovithz, J. Sonn, A. Mayevsky, Brain Res. Rev. 2007, 294–304.

    Google Scholar 

  12. C. Djerassi, R. Hoffmann, J. Chem. Educ. 2001, 78, 283–284.

    Article  Google Scholar 

  13. Z. M. Lerman, Chem. Educ. Int. 2005, 6, 1–5.

    Google Scholar 

  14. C. Djerassi, R. Hoffmann, Oxygen, Wiley-VCH, Weinheim, Germany, 2001.

    Google Scholar 

  15. R. A. Kerr, Science 2013, 339, 1373.

    Article  CAS  PubMed  Google Scholar 

  16. C. S. Cockell, Astrobiology 2014, 14, 182–203.

    Article  PubMed Central  PubMed  Google Scholar 

  17. R. M. Hazen, The Story of Earth. The First 4.5 Billion Years, from Stardust to Living Planet, Viking, New York, USA, 2012.

    Google Scholar 

  18. H. D. Holland, Phil. Trans. R. Soc. B 2006, 361, 903–915.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. N. H. Sleep, D. K. Bird, Phil. Trans. R. Soc. B 2008, 363, 2651–2664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. L. R. Kump, Perspective 2012, 410–411; DOI: 10.2113/gselements. 8.6.410.

  21. T W. Lyons, C. T. Reinhard, N. J. Planavsky, Nature 2014, 506, 307–315.

    Google Scholar 

  22. D. E. Canfield, Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36.

    Google Scholar 

  23. S. A. Crowe, L. N. Døssing, N. J. Beukes, M. Bau, S. J. Kruger, R. Frei, D. E. Canfield, Nature 2013, 501, 535–538.

    Article  CAS  PubMed  Google Scholar 

  24. D. P. Mellor, Chemistry 1964, 37, 12–16.

    CAS  Google Scholar 

  25. M. Dole, J. Gen. Physiol. 1965, 49, 5–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. www.globalchange.umich.edu/globalchange1/current/lectures/Perry_Samson_lectures/evolution_atm/

  27. J. F. Kasting, M. T. Howard, Phil. Trans. R. Soc. B 2006, 361, 1733–1742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. C. Zimmer, The Mystery of Earth’s Oxygen, in The New York Times, October 3, 2013.

    Google Scholar 

  29. V. Smil, Cycles of Life: Civilization and the Biosphere, Scientific American Library, W. H. Freeman and Company, New York, USA, 1997.

    Google Scholar 

  30. J. J. Ebelmen, Ann. Rev. Mines 1845, 12, 627–654.

    Google Scholar 

  31. R. A. Berner, D. J. Berling, R. Dudley, J. M. Robinson, R. A. Wildman, Jr., Ann. Rev. Earth Planet. Sci. 2003, 31, 105–134.

    Article  CAS  Google Scholar 

  32. P. M. H. Kroneck, Met. Ions Biol. Syst. 2005, 43, 1–10.

    Google Scholar 

  33. H. D. Holland, Geochim. Cosmochim. Acta 2002, 66, 3811–3826.

    Article  CAS  Google Scholar 

  34. Q. J. Guo, H. Strauss, A. J. Kaufman, S. Schröder, J. Gutzmer, B. Wing, M. A. Baker, A. Bekker, Q. S. Jin, S.-T. Kim, J. Farquhar, Geology 2009, 37, 399–402.

    Article  Google Scholar 

  35. A. D. Anbar, Y. Duan, T. W. Lyons, G. L. Arnold, B. Kendall, R. A. Creaser, A. J. Kaufman, G. W. Gordon, C. Scott, J. Garvin, R. Buick, Science 2007, 317, 1903–1906.

    Article  CAS  PubMed  Google Scholar 

  36. M. A. Wilson, image freely available from Wikipedia for any purpose: http://commons.wikimedia.org/wiki/User:Wilson44691

  37. N. J. Planavsky, D. Asael, A. Hofmann, C. T. Reinhard, S. V. Lalonde, A. Knudsen, X. Wang, F. Ossa Ossa, E. Pecoits, A. J. B. Smith, N. J. Beukes, A. Bekker, T. M. Johnson, K. O. Konhauser, T.W. Lyons, O. J. Rouxel, Nature Geoscience 2014, 7, 283–286.

    Article  CAS  Google Scholar 

  38. J. E. Johnson, S. M. Webb, K. Thomas, S. Ono, J. L. Kirschvink, W. W. Fischer, Proc. Natl. Acad. Sci. USA 2013, 110, 11238–11243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. O. Warburg, Science 1956, 123, 309–314.

    Article  CAS  PubMed  Google Scholar 

  40. I. Fridovich, J. Experimental Biology 1998, 201, 1203–1209.

    CAS  Google Scholar 

  41. J. S. Valentine, D. L. Wertz, T. J. Lyons, L.-L. Liou, J. J. Goto, E. Butler Gralla, Curr. Opin. Chem. Biol. 1998, 2, 253–262.

    Article  CAS  PubMed  Google Scholar 

  42. G. Weissmann, FASEB J. 2010, 24, 649–652.

    Article  CAS  PubMed  Google Scholar 

  43. R. Gerschman, D. L. Gilbert, S. W. Nye, P. Dwyer, W. O. Fenn, Science 1954, 119, 623–626.

    Article  CAS  PubMed  Google Scholar 

  44. A.-L. Lavoisier, Traité Elémentaire de Chimie (1789), illustrated by Madame Lavoisier. in Lavoisier, Fourier, Faraday, Great Books of the Western World Series, Eds R. M. Hutchins, M. J. Adler, Encyclopædia Britannica, Inc., Chicago, USA, 1952, see A.-L. Lavoisier, 1–160.

    Google Scholar 

  45. F. Baymann, E. Lebrun, M. Brugna, B. Schoepp-Cothenet, M.-T. Giudici-Orticoni, W. Nitschke, Phil. Trans. Roy. Soc. Lond. B 2003, 358, 267–274.

    Article  CAS  Google Scholar 

  46. A.-L. Ducluzeau, B. Schoepp-Cothenet, R. van Lis, F. Baymann, M. J. Russell, W. Nitschke, J. Roy. Soc. Interface 2014, 11, 20140196.

    Article  Google Scholar 

  47. W. G. Zumft, P. M. H. Kroneck, Adv. Microb. Physiol. 2007, 52, 108–226.

    Google Scholar 

  48. D.E. Canfield, Oxygen: A Four Billion Year History, Princeton University Press, Princeton, USA, 2014. See book review by T.W. Lyons, Nature Chemistry 2014, 6, 655.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for continuous financial support by Deutsche Forschungsgemeinschaft and Universität Konstanz (PK), and CONACYT and DGAPA-UNAM (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. H. Kroneck .

Editor information

Editors and Affiliations

Abbreviations and Definitions

Abbreviations and Definitions

BIF:

banded iron formation

Ga:

billion years (giga years)

GOE:

great oxidation event

HOMO:

highest occupied molecular orbital

NHE:

normal hydrogen electrode

ROS:

reactive oxygen species

1 atmosphere (atm):

1.013 bars

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sosa Torres, M.E., Saucedo-Vázquez, J.P., Kroneck, P.M.H. (2015). The Magic of Dioxygen. In: Kroneck, P., Sosa Torres, M. (eds) Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-12415-5_1

Download citation

Publish with us

Policies and ethics