Skip to main content

Economic and Environmental Evaluation of Recombinant Enzyme Production

  • Chapter
  • First Online:
Recombinant Enzymes - From Basic Science to Commercialization

Abstract

Economic and environmental evaluation on three different throughputs and comparison between these throughputs were presented. Comparisons are based on simulation of 10, 100 and 1000 kg/batch of recBromelain using SuperPro Designer v8.5. The economic analysis shows that 100 kg/batch gives the most competitive price and maintaining a sizeable profit gross margin of 28.21 %. A positive ROI of 18.41 % and minimal payback time of 5.43 years is predicted from 100 kg/batch of production. Environment analysis showed that total waste and energy consumption increased as production size increased. This simulation information will assist to predict the cost and environment impact at different size of productions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ernst S, Garro OA, Winkler S, Venkataraman G, Langer R, Cooney CL et al (1997) Process simulation for recombinant protein production: cost estimation and sensitivity analysis for heparinase I expressed in Escherichia coli. Biotechnol Bioeng 53:575–582

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen PH, Oxenbøll KM, Wenzel H (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by novozymes A/S. Int J Life Cycle Assess 12:432–438

    Article  CAS  Google Scholar 

  3. Ketnawa S, Rawdkuen S, Chaiwut P (2010) Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochem Eng J 52:205–211

    Article  CAS  Google Scholar 

  4. Corzo CA, Waliszewski KN, Welti-Chanes J (2012) Pineapple fruit bromelain affinity to different protein substrates. Food Chem 133:631–635

    Article  CAS  Google Scholar 

  5. Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  6. Muntari Bala, Maizirwan M, Mohamed Saedi Jami, Hamzah Mohd. Salleh AA (2012) Bromelain production: current trends and perspective. Arch Des Sci 65:369–399

    Google Scholar 

  7. Nadzirah KZ, Zainal S, Noriham A, Normah I, Roha AMS (2012) Physico-chemical properties of pineapple crown extract variety N36 and bromelain activity in different forms. APCBEE Procedia 4:130–134

    Article  CAS  Google Scholar 

  8. Pavan R, Jain S, Shraddha, Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int 2012:6

    Article  Google Scholar 

  9. Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90:385–391

    Article  CAS  Google Scholar 

  10. Amid A, Ismail NA, Yusof F, Salleh HM (2011) Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochem 46:2232–2239

    Article  CAS  Google Scholar 

  11. (2010) Bromelain. Monograph. Alterna Med Rev J Clin Ther 15:361–368

    Google Scholar 

  12. Shahab N, Zainudin N, Badrudin S (2013) Evaluation of recombinant bromelain in the BALB/c 3T3 NRU cytotoxicity study. Standard and Industrial Research Institute of Malaysia (SIRIM) Berhad

    Google Scholar 

  13. Gutfreund A, Taussig S, Morris A (1978) Effect of oral bromelain on blood pressure and heart rate of hypertensive patients. Hawaii Med J 37:143

    CAS  PubMed  Google Scholar 

  14. Pillai K, Ehteda A, Akhter J, Chua TC, Morris DL (2014) Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anti-cancer Drugs 25:150–160

    Article  CAS  PubMed  Google Scholar 

  15. Müller S, März R, Schmolz M, Drewelow B, Eschmann K, Meiser P (2013) Placebo‐controlled randomized clinical trial on the immunomodulating activities of low‐and high‐dose bromelain after oral administration–new evidence on the antiinflammatory mode of action of bromelain. Phytother Res 27:199–204

    Article  PubMed  Google Scholar 

  16. Aiyegbusi AI, Olabiyi OO, Duru FI, Noronha CC, Okanlawon AO (2011) A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush achilles tendon injury. J Med Food 14:348–352

    Article  CAS  PubMed  Google Scholar 

  17. Secor ER Jr, Carson IV WF, Cloutier MM, Guernsey LA, Schramm CM, Wu CA et al (2005) Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol 237:68–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azlin Suhaida Azmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jamaluddin, M., Azmi, A., Sulaiman, S., Jimat, D., Othman, M., Amid, A. (2015). Economic and Environmental Evaluation of Recombinant Enzyme Production. In: Amid, A. (eds) Recombinant Enzymes - From Basic Science to Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-12397-4_9

Download citation

Publish with us

Policies and ethics