Skip to main content

Case Study: Recombinant Bromelain Selection

  • Chapter
  • First Online:
  • 1334 Accesses

Abstract

This chapter presents an investigation that we performed prior to the decision to proceed cloning and producing recombinant bromelain. The criteria that we examined were the following: (1) easy access to a DNA source; (2) broad application; (3) an enzyme size amenable to the cloning strategy; (4) available data in free online databases; (5) broad industrial application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suh HJ, Lee H, Cho HY, Yang HC (1992) Purification and characterization of bromelain isolated from pineapple. J Korean Agric Chem Soc 35:300–307

    CAS  Google Scholar 

  2. Harrach T, Eckert K, Maurer HR, Machleidt I, Machleidt W, Nuck R (1998) Isolation and characterization of two forms of an acidic bromelain stem proteinase. J Protein Chem 17:351–361

    Article  CAS  PubMed  Google Scholar 

  3. Ketnawa S, Rawdkuen S, Chaiwut P (2010) Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochem Eng J 52:205–211

    Article  CAS  Google Scholar 

  4. Ketnawa S, Chaiwut P, Rawdkuen S (2011) Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’ cultv.) and its biochemical properties. Food Sci Biotechnol 20:1219–1226

    Article  CAS  Google Scholar 

  5. Ketnawa S, Chaiwut P, Rawdkuen S (2011) Extraction of bromelain from pineapple peels. Food Sci Technol Int 17:395–402

    Article  CAS  PubMed  Google Scholar 

  6. Gautam VS, Mishra K, Dash V, Goyal AK, Rath G (2010) Comparative study of extraction, purification and estimation of bromelain from stem and fruit of pineapple plant. Thai J Pharm Sci 34:67–76

    CAS  Google Scholar 

  7. Kumar S, Hemavathi AB, Hebbar HU (2011) Affinity based reverse micellar extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl) waste. Process Biochem 46:1216–1220

    Article  CAS  Google Scholar 

  8. Xue Y, Wu CY, Branford-White CJ, Ning X, Nie HL, Zhu LM (2010) Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J Mol Catal B-Enzym 63:188–193

    Article  CAS  Google Scholar 

  9. Lee KL, Albee KL, Bernasconi RJ, Edmunds T (1997) Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. Biochem J 327:199–202

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Napper AD, Bennett SP, Borowski M, Holdridge MB, Leonard MJ, Rogers EE et al (1994) Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem J 301(Pt 3):727–735

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Amid A, Ismail NA, Yusof F, Salleh HM (2011) Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochem 46:2232–2239

    Article  CAS  Google Scholar 

  12. Corzo CA, Waliszewski KN, Welti-Chanes J (2012) Pineapple fruit bromelain affinity to different protein substrates. Food Chem 133:631–635

    Article  CAS  Google Scholar 

  13. Lopes FLG, Severo JB, de Souza RR, Ehrhardt DD, Santana JCC, Tambourgi EB (2009) Concentration by membrane separation processes of a medicinal product obtained from pineapple pulp. Braz Arch Biol Technol 52:457–464

    Article  CAS  Google Scholar 

  14. Jutamongkon R, Charoenrein S (2010) Effect of temperature on the stability of fruit bromelain from smooth cayenne pineapple. Kasetsart J (Nat Sci) 44:943–948

    Google Scholar 

  15. Silvestre MPC, Carreira RL, Silva MR, Corgosinho FC, Monteiro MRP, Morais HA (2012) Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food Bioprocess Tech 5:1824–1831

    Article  CAS  Google Scholar 

  16. Liang HY, Li M, Shiga H (2011) Study on the stability of fruit bromelain. Advanced Materials Res 421:19–22

    Article  Google Scholar 

  17. Harrach T, Eckert K, Schulze-Forster K, Nuck R, Grunow D, Maurer HR (1995) Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem 14:41–52

    Article  CAS  PubMed  Google Scholar 

  18. Mahajan RT, Badgujar SB (2010) Biological aspects of proteolytic enzymes: a review. J Phar Res 3:2048–2068

    Google Scholar 

  19. Grzonka Z, Kasprzykowski F, Wiczk W (2007) Cystein proteases In: Polaina J, MacCabe AP, (eds) Industrial enzyme: structure, function and applications. Springer, Netherlands, p. 181–97.

    Google Scholar 

  20. Warin S, Tanticharoen M (1999) Alkaline protease of a genetically-engineered Aspergillus oryzae for the use as a silver recovery agent from used X-ray film. J Microbiol Biotechn 9:568–571

    CAS  Google Scholar 

  21. Tanabe S, Arai S, Watanabe M (1996) Modification of wheat flour with bromelain and baking hypoallergenic bread with added ingredients. Biosci Biotechnol Bioch 60:1269–1272

    Article  CAS  Google Scholar 

  22. Jin FX, Toda K (1988) Preparation of immobilized papain covalently bound on natural cellulose for treatment of beer. Biotechnol Lett 10:221–223

    Article  CAS  Google Scholar 

  23. Jones BL (2005) The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J Cereal Sci 42:271–280

    Article  CAS  Google Scholar 

  24. Mahajan RT, Badgujar SB (2010) Biological aspects of proteolytic enzymes: a review. J Phar Res 3:2048–2068

    Google Scholar 

  25. Rani K, Rana R, Datt S (2012) Review on latest overview of proteases. Int J Curr Life Sci 2:12–18

    Google Scholar 

  26. Miller MF, Carr MA, Ramsey CB, Crockett KL, Hoover LC (2001) Consumer thresholds for establishing the value of beef tenderness. J Anim Sci 79:3062–3068

    CAS  PubMed  Google Scholar 

  27. Lyons TP (1988) Proteinases in industry. Crit Rev Biotechnol 8:99–110

    Article  CAS  Google Scholar 

  28. Sullivan GA, Calkins CR (2010) Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci 85:730–734

    Article  CAS  PubMed  Google Scholar 

  29. Safari R, Motamedzadegan A, Ovissipour M, Regenstein JM, Gildberg A, Rasco B. (2012) Use of hydrolysates from Yellowfin Tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess Tech 5:73–79

    Article  CAS  Google Scholar 

  30. Klompong V, Benjakul S, Kantachote D, Shahidi F (2012) Use of protein hydrolysate from Yellow Stripe Trevally (Selaroides leptolepis) as microbial media. Food Bioprocess Tech 5:1317–1327

    Article  CAS  Google Scholar 

  31. Aspmo SI, Horn SJ, Eijsink VGH (2005) Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem 40:1957–1966

    Article  CAS  Google Scholar 

  32. Chobotova K, Vernallis AB, Majid FA (2010) Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 290:148–156

    Article  CAS  PubMed  Google Scholar 

  33. Pirotta F, de Giuli-Morghen C (1978) Bromelain: anti-inflammatory and serum fibrinolytic activity after oral administration in the rat. Drugs Exp Clin Res 4:1–20

    CAS  Google Scholar 

  34. Livio M, Bertoni MP, De Gaetano G, Donati MB (1978) Effects of bromelain on fibrinogen level, prothrombin complex and platelet aggregation in the rat—a preliminary report. Drugs Exp Clin Res 4:49–53

    CAS  Google Scholar 

  35. Kumakura S, Yamashita M, Tsurufuji S (1988) Effect of bromelain on kaolin-induced inflammation in rats. Eur J Pharmacol 150:295–301

    Article  CAS  PubMed  Google Scholar 

  36. Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP (2008) Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 128:66–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bhui K, Prasad S, George J, Shukla Y (2009) Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett 282:167–176

    Article  CAS  PubMed  Google Scholar 

  38. Gaspani L, Limiroli E, Ferrario P, Bianchi M (2002) In vivo and in vitro effects of bromelain on PGE(2) and SP concentrations in the inflammatory exudate in rats. Pharmacology 65:83–86

    Article  CAS  PubMed  Google Scholar 

  39. Huang JR, Wu CC, Hou RC, Jeng KC (2008) Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14. Immunol Invest 37:263–277

    Article  CAS  PubMed  Google Scholar 

  40. Hale LP, Greer PK, Sempowski GD (2002) Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clin Immunol 104:183–190

    Article  CAS  PubMed  Google Scholar 

  41. Hale LP, Haynes BF (1992) Bromelain treatment of human T cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules and markedly enhances CD2-mediated T cell activation. J Immunol 149:3809–3816

    CAS  PubMed  Google Scholar 

  42. Severijnen AJ, van Kleef R, Hazenberg MP, van de Merwe JP (1990) Chronic arthritis induced in rats by cell wall fragments of Eubacterium species from the human intestinal flora. Infect Immun 58:523–528

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Mynott TL, Ladhams A, Scarmato P, Engwerda CR (1999) Bromelain, from pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. J Immunol 163:2568–2575

    CAS  PubMed  Google Scholar 

  44. Hale LP (2004) Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int Immunopharmacol 4:255–264

    Article  CAS  PubMed  Google Scholar 

  45. Engwerda CR, Andrew D, Ladhams A, Mynott TL (2001) Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell Immunol 210:66–75

    Article  CAS  PubMed  Google Scholar 

  46. Manhart N, Akomeah R, Bergmeister H, Spittler A, Ploner M, Roth E (2002) Administration of proteolytic enzymes bromelain and trypsin diminish the number of CD4+ cells and the interferon-gamma response in Peyer's patches and spleen in endotoxemic balb/c mice. Cell Immunol 215:113–119

    Article  CAS  PubMed  Google Scholar 

  47. Shahid SK, Turakhia NH, Kundra M, Shanbag P, Daftary GV, Schiess W (2002) Efficacy and safety of phlogenzym–a protease formulation, in sepsis in children. J Assoc Physicians India 50:527–531

    CAS  PubMed  Google Scholar 

  48. Guo R, Canter PH, Ernst E (2006) Herbal medicines for the treatment of rhinosinusitis: a systematic review. Otolaryngol Head Neck Surg 135:496–506

    Article  PubMed  Google Scholar 

  49. Snowden HM, Renfrew MJ, Woolridge MW (2001) Treatments for breast engorgement during lactation. Cochrane Database Syst Rev (2)CD000046

    Google Scholar 

  50. Lotti T, Mirone V, Imbimbo C, Corrado F, Corrado G, Garofalo F et al (1993) Controlled clinical studies of nimesulide in the treatment of urogenital inflammation. Drugs 46(Suppl 1):144–146

    Article  PubMed  Google Scholar 

  51. Brien S, Lewith G, Walker AF, Middleton R, Prescott P, Bundy R (2006) Bromelain as an adjunctive treatment for moderate-to-severe osteoarthritis of the knee: a randomized placebo-controlled pilot study. QJM 99:841–850

    Article  CAS  PubMed  Google Scholar 

  52. Klein G, Kullich W, Schnitker J, Schwann H (2006) Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip. A double-blind, randomised study comparing oral enzymes with non-steroidal anti-inflammatory drugs. Clin Exp Rheumatol 24:25–30

    CAS  PubMed  Google Scholar 

  53. Hale LP, Greer PK, Trinh CT, Gottfried MR (2005) Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin Immunol 116:135–142

    Article  CAS  PubMed  Google Scholar 

  54. Secor ER Jr, Carson WFt, Cloutier MM, Guernsey LA, Schramm CM, Wu CA et al (2005) Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol 237:68–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kane S, Goldberg MJ (2000) Use of bromelain for mild ulcerative colitis. Ann Intern Med 132:680

    Article  CAS  PubMed  Google Scholar 

  56. Gerard G (1972) [Anticancer treatment and bromelains]. Agressologie 13:261–274

    CAS  PubMed  Google Scholar 

  57. Nieper HA (1974) A program for the treatment of cancer. Krebs 6:124–127

    Google Scholar 

  58. Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  59. Sinn HP, Heider KH, Skroch-Angel P, von Minckwitz G, Kaufmann M, Herrlich P et al (1995) Human mammary carcinomas express homologues of rat metastasis-associated variants of CD44. Breast Cancer Res Treat 36:307–313

    Article  CAS  PubMed  Google Scholar 

  60. Lesley J, Hyman R, English N, Catterall JB, Turner GA (1997) CD44 in inflammation and metastasis. Glycoconjugate J 14:611–622

    Article  CAS  Google Scholar 

  61. Bharadwaj AG, Kovar JL, Loughman E, Elowsky C, Oakley GG, Simpson MA (2009) Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing. Am J Pathol 174:1027–1036

    Article  PubMed Central  PubMed  Google Scholar 

  62. Bharadwaj AG, Rector K, Simpson MA (2007) Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis. J Biol Chem 282:20561–20572

    Article  CAS  PubMed  Google Scholar 

  63. Gao F, Yang CX, Mo W, Liu YW, He YQ (2008) Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 31:E106–116

    Google Scholar 

  64. Zanker KS (2001) The use of systemic enzyme therapy in oncology. Cancer Chemoth Pharm 47:S1–S3

    Google Scholar 

  65. Kalra N, Bhui K, Roy P, Srivastava S, George J, Prasad S et al (2008) Regulation of p53, nuclear factor KB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin. Toxicol Appl Pharmacol 226:30–37

    Article  CAS  PubMed  Google Scholar 

  66. Baez R, Lopes MT, Salas CE, Hernandez M (2007) In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med 73:1377–1383

    Article  CAS  PubMed  Google Scholar 

  67. Beuth J, Braun JM (2005) Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo. 19:483–485

    CAS  PubMed  Google Scholar 

  68. Guimaraes-Ferreira CA, Rodrigues EG, Mortara RA, Cabral H, Serrano FA, Ribeiro-dos-Santos R et al (2007) Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia 9:723–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tysnes BB, Maurer HR, Porwol T, Probst B, Bjerkvig R, Hoover F (2001) Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia 3:469–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rosenberg L, Lapid O, Bogdanov-Berezovsky A, Glesinger R, Krieger Y, Silberstein E et al (2004) Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: a preliminary report. Burns 30:843–850

    Article  PubMed  Google Scholar 

  71. Krieger Y, Rosenberg L, Lapid O, Glesinger R, Bogdanov-Berezovsky A, Silberstein E et al (2005) Escharotomy using an enzymatic debridement agent for treating experimental burn-induced compartment syndrome in an animal model. J Trauma 58:1259–1264

    Article  CAS  PubMed  Google Scholar 

  72. Singer AJ, McClain SA, Taira BR, Rooney J, Steinhauff N, Rosenberg L (2010) Rapid and selective enzymatic debridement of porcine comb burns with bromelain-derived Debrase: acute-phase preservation of noninjured tissue and zone of stasis. J Burn Care Res 31:304–309

    Article  PubMed  Google Scholar 

  73. Orsini RA (2006) Bromelain. Plast reconstr surg 118:1640–4

    Article  CAS  PubMed  Google Scholar 

  74. Tochi BN, Zhang W, Ying X, Wenbin Z (2008) Therapeutic application of pineapple protease (bromelain): a review. Pak J Nutr 7:513–520

    Article  CAS  Google Scholar 

  75. Brown SA, Coimbra M, Coberly DM, Chao JJ, Rohrich RJ (2004) Oral nutritional supplementation accelerates skin wound healing: a randomized, placebo-controlled, double-arm, crossover study. Plast Reconstr Surg 114:237–244

    Article  PubMed  Google Scholar 

  76. Hu W, Wang AM, Wu SY, Zhang B, Liu S, Gou YB et al (2011) Debriding effect of bromelain on firearm wounds in pigs. J Trauma 71:966–72

    Article  CAS  PubMed  Google Scholar 

  77. Wu SY, Hu W, Zhang B, Liu S, Wang JM, Wang AM (2012) Bromelain ameliorates the wound microenvironment and improves the healing of firearm wounds. J Surg Res 176:503–509

    Article  CAS  PubMed  Google Scholar 

  78. Chandler DS, Mynott TL (1998) Bromelain protects piglets from diarrhoea caused by oral challenge with K88 positive enterotoxigenic Escherichia coli. Gut 43:196–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Thomson AB, Keelan M, Thiesen A, Clandinin MT, Ropeleski M, Wild GE (2001) Small bowel review: diseases of the small intestine. Dig Dis Sci 46:2555–2566

    Article  CAS  PubMed  Google Scholar 

  80. Mynott TL, Guandalini S, Raimondi F, Fasano A (1997) Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology 113:175–184

    Article  CAS  PubMed  Google Scholar 

  81. Roselli M, Britti MS, Le Huerou-LuronI, Marfaing H, Zhu WY, Mengheri E (2007) Effect of different plant extracts and natural substances (PENS) against membrane damage induced by enterotoxigenic Escherichia coli K88 in pig intestinal cells. Toxicol In Vitro 21:224–229

    Article  CAS  PubMed  Google Scholar 

  82. Kelly GS (1996) Bromelain: a literature review and discussion of its therapeutic applications. Altern Med Rev 1:243–257

    Google Scholar 

  83. Felton GE (1980) Fibrinolytic and antithrombotic action of bromelain may eliminate thrombosis in heart patients. Med Hypotheses 6:1123–1233

    Article  CAS  PubMed  Google Scholar 

  84. Metzig C, Grabowska E, Eckert K, Rehse K, Maurer HR (1999) Bromelain proteases reduce human platelet aggregation in vitro, adhesion to bovine endothelial cells and thrombus formation in rat vessels in vivo. In Vivo 13:7–12

    CAS  PubMed  Google Scholar 

  85. Eckert K, Grabowska E, Stange R, Schneider U, Eschmann K, Maurer HR (1999) Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncol Rep 6:1191–1199

    CAS  PubMed  Google Scholar 

  86. Roep BO, van den Engel NK, van Halteren AG, Duinkerken G, Martin S (2002) Modulation of autoimmunity to beta-cell antigens by proteases. Diabetologia 45:686–692

    Article  CAS  PubMed  Google Scholar 

  87. Munzig E, Eckert K, Harrach T, Graf H, Maurer HR (1994) Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells. FEBS Lett 351:215–218

    Article  CAS  PubMed  Google Scholar 

  88. Hale LP, Fitzhugh DJ, Staats HF (2006) Oral immunogenicity of the plant proteinase bromelain. Int Immunopharmacol 6:2038–2046

    Article  CAS  PubMed  Google Scholar 

  89. Contreras A, Paape MJ, Miller RH, Corrales JC, Luengo C, Sanchez A (2009) Effect of bromelain on milk yield, milk composition and mammary health in dairy goats. Trop Anim Health Pro 41:493–498

    Article  CAS  Google Scholar 

  90. Tománková O, Kopečný J (1995) Prediction of feed protein degradation in the rumen with bromelain. Anim Feed Sci Technol 53:71–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azura Amid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amid, A., Ismail, N., Arshad, Z. (2015). Case Study: Recombinant Bromelain Selection. In: Amid, A. (eds) Recombinant Enzymes - From Basic Science to Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-12397-4_10

Download citation

Publish with us

Policies and ethics