Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1494 Accesses

Abstract

Based on the bound characteristics of frequency response functions, evaluation of the convergence bound in the frequency domain for Volterra series expansion of nonlinear systems described by NARX models is studied. This provides new convergence criteria under which the nonlinear system of interest has a convergent Volterra series expansion, and the new criteria are expressed explicitly in terms of the input magnitude, model parameters, and frequency variable. The new convergence criteria are firstly developed for harmonic inputs, which are frequency-dependent, and then extended to multi-tone and general input cases, which are frequency-independent. Based on the theoretical analysis, a general procedure for calculating the convergence bound is provided. The results provide a fundamental basis for nonlinear signal processing using the Volterra series theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batista ELO, Tobias OJ, Seara R (2010) A sparse-interpolated scheme for implementing adaptive Volterra filters. IEEE Trans Signal Process 58:2022–2035

    Article  MathSciNet  Google Scholar 

  • Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst CAS-32(11):1150–1160

    Article  MathSciNet  Google Scholar 

  • Bullo F (2002) Series expansions for analytic systems linear in control. Automatica 38:1425–1432

    Article  MATH  MathSciNet  Google Scholar 

  • Buonomo A, Lo Schiavo A (2005) Perturbation analysis of nonlinear distortion in analog integrated circuits. IEEE Trans Circuits Syst I Reg Papers 52:1620–1631

    Google Scholar 

  • Crespo-Cadenas C, Reina-Tosina J, Madero-Ayora MJ, Munoz-Cruzado J (2010) A new approach to pruning Volterra models for power amplifiers. IEEE Trans Signal Process 58:2113–2120

    Article  MathSciNet  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press

    Google Scholar 

  • Helie T, Laroche B (2011) Computation of convergence bounds for Volterra series of linear-analytic single-input systems. IEEE Trans Autom Control 56:2062–2072

    Article  MathSciNet  Google Scholar 

  • Hermann R (1990) Volterra modeling of digital magnetic saturation recording channels. IEEE Trans Magn 26:2125–2127

    Article  Google Scholar 

  • Jing XJ, Xiao ZL (2014) An input-dependent convergence bound of Volterra series expansion of nonlinear systems. Automatica

    Google Scholar 

  • Jing XJ, Simpson D, Allen R, Newland P (2012) Understanding neuronal systems in movement control using Wiener/Volterra kernels: a dominant feature analysis. J Neurosci Methods 203(1):220–232

    Article  Google Scholar 

  • Krall C, Witrisal K, Leus G, Koeppl H (2008) Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans Signal Process 56:4729–4737

    Article  MathSciNet  Google Scholar 

  • Kuech F, Kellermann W (2005) Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Trans Signal Process 53:564–575

    Article  MathSciNet  Google Scholar 

  • Li LM, Billings SA (2011) Analysis of nonlinear oscillators using Volterra series in the frequency domain. J Sound Vib 330:337–355

    Article  Google Scholar 

  • Li T, Jean J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49:1667–1676

    Article  Google Scholar 

  • Mileounis G, Kalouptsidis N (2009) Blind identification of second order Volterra systems with complex random inputs using higher order cumulants. IEEE Trans Signal Process 57:4129–4135

    Article  MathSciNet  Google Scholar 

  • Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley-VCH

    Google Scholar 

  • Peng Z, Lang ZQ (2007) On the convergence of the Volterra-series representation of the Duffing’s oscillators subjected to harmonic excitations. J Sound Vib 305:322–332

    Article  MATH  MathSciNet  Google Scholar 

  • Sandberg I (1983) On Volterra expansions for time-varying nonlinear systems. IEEE Trans Circuits Syst 30:61–67

    Article  MATH  MathSciNet  Google Scholar 

  • Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. In: Sanders JA, Verhulst F (eds) Applied mathematical sciences, vol 59. Springer, New York. 10+ 247 pp. Price DM 84.00 (1985). ISBN 0-387-96229-8 (USA), ISBN 3-540-96229-8 (FR Germany). vol 1, 1985

    Google Scholar 

  • Stewart I, Tall DO (1983) Complex analysis, the hitchhiker’s guide to the plane. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tomlinson GR, Manson G, Lee GM (1996) A simple criterion for establishing an upper limit to the harmonic excitation level of the Duffing oscillator using the Volterra series. J Sound Vib 190:751–762

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao ZL, Jing XJ, Cheng L (2013a) The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J Sound Vib 332(5):1335–1354

    Article  Google Scholar 

  • Xiao ZL, Jing XJ, Cheng L (2013b) Parameterized convergence bounds for Volterra series expansion of NARX models. IEEE Trans Signal Process 61(20):5026–5038

    Article  MathSciNet  Google Scholar 

  • Xiao ZL, Jing XJ, Cheng L (2014) Estimation of parametric convergence bounds for Volterra series expansion of nonlinear systems. Mech Syst Signal Process 45(1):28–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jing, X., Lang, Z. (2015). Parametric Convergence Bounds of Volterra-Type Nonlinear Systems. In: Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12391-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12391-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12390-5

  • Online ISBN: 978-3-319-12391-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics