Skip to main content

Lensless Imaging Results

  • Chapter
  • First Online:
High-Resolution Extreme Ultraviolet Microscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 698 Accesses

Abstract

The achieved imaging results are presented and discussed in this chapter. Using digital in-line holography amplitude and phase-contrast imaging in the extreme ultraviolet on cell-like specimen is presented. This is followed by experiments on coherent diffraction imaging at the Abbe limit demonstrating unprecedented relative resolution. Experiments carried out in reflection geometry, which allow for much more applications, and the introduction of an award-winning cancer cell classification method conclude that chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The water window is a range of wavelengths between the K-edge of oxygen at 2.34 nm and the K-edge of carbon at 4.4 nm, where biological materials become transparent.

  2. 2.

    A 3 mm diameter silicon disk with 200 \(\upmu \)m thickness in this case.

  3. 3.

    With simulated hologram \(|U_\mathrm{{det}}(x,y)|^2\) at the end of the reconstruction is denoted. Visual and numerical comparison with the measured hologram \(I(x,y)\) allows to judge whether or not the reconstruction was successful.

  4. 4.

    The refractive index of \(\mathrm {Si}_3\mathrm {N}_4\) is \(n=1.24-0.17\mathrm {i}\) at 39 nm wavelength [5]. Hence, \(\triangle \phi =2\pi \cdot 0.24d /\lambda \) is the phase shift of a wave passing through a \(\mathrm {Si}_3\mathrm {N}_4\) layer of thickness \(d\) relative to the wave propagating through the open space of the burst window in the presented case.

  5. 5.

    Compare to Fig. 3.8 where the distances between pinhole and sample were larger.

  6. 6.

    For the DIH reconstructions presented in this thesis the computation grid was typically between \(4000\times 4000\) and \(7000\times 7000\) pixels large, demanding a high amount of memory.

  7. 7.

    If the measured diffraction pattern in CDI is highly oversampled one can even reduce the computation grid further by binning pixels together without losing resolution in the reconstructed object, as was done in Sect. 4.3.

  8. 8.

    A processor operating at 3.1 GHz having four cores and 8 GB random access memory.

  9. 9.

    For very special sample geometries providing sparsity sub-wavelength CDI was demonstrated for visible light [10].

  10. 10.

    The bare 200 nm silicon nitride has a residual transmission of \(0.02\,\%\) [5].

  11. 11.

    From a first estimate by mechanically measuring the distance it was clear that the distance between sample and CCD was in the order of 10 mm.

  12. 12.

    Maximum detectable momentum transfer refers to the highest measurable modulus of the projected momentum transfer vector \(\mathbf {q}\) for all angles \(\phi \) (Fig. 3.9) with respect to the center of the CCD, e.g. at the CCD’s midpoints of the edges.

  13. 13.

    The conservative value of \(\mathrm {PRTF}=0.5\) as threshold is used.

  14. 14.

    The \(90\,\%\)/\(10\,\%\) of the modulus of the electron density \(\rho \) criterion is used to determine the resolution of the experimental data [11].

  15. 15.

    The different hue is due to a constant phase offset compared to Fig. 4.6c, which is one of the remaining ambiguities in a CDI reconstruction.

  16. 16.

    Please refer to Fig. 3.11 for the coordinate definition in this section.

  17. 17.

    Success in this case is measured by the error metric, which was mentioned in Sect. 2.3.

  18. 18.

    More precisely these are ellipses in the stretched pattern.

  19. 19.

    Note that the NA should in principle allow a resolution of \(\triangle r\approx 0.63\,\upmu \)m. This is effectively reduced here due to the projection.

  20. 20.

    Carbon and gold have a comparable reflectivity at used wavelength and angle of incidence [5]. Hence, one probes the surface and silhouette of the specimen at the same time to acquire a maximum of spatial information.

  21. 21.

    For convenience the whole measured intensity distribution will be denoted as diffraction pattern in the remainder of this section, regardless of the fact that the center represents actually a hologram.

  22. 22.

    A comparable Fourier transform based approach was proposed by Lendaris and Stanley for classifying photographic transparencies [29].

  23. 23.

    Of course this method will also work with pure CDI setups and is not limited to the presented geometry, just the data collection then becomes more problematic due to the need for a beam stop etc.

  24. 24.

    Here image refers to the measured raw data from the CCD. Each image was normalized to a common level.

  25. 25.

    The measured power of a single harmonic at 1 kHz repetition rate behind the pinhole is \(\approx \)1 nW. Together with \(\lambda =39\) nm this yields a number of photons per pulse on target \(n_\mathrm{{ph}}\approx 6\times 10^6\) \({\mathrm {photons}}/{\mathrm {pulse}}\). Together with the exposure time \(t_\mathrm{{exp}}=1{,}500\)s and the values and formulas given in [33] it allows an estimate of the dose.

  26. 26.

    Unit: 1 [Gy] = 1 [J/kg] is the unit of the dose called Gray.

References

  1. Jiang, H., Song, C., Chen, C.C., Xu, R., Raines, K.S., Fahimian, B.P., Lu, C.H., Lee, T.K., Nakashima, A., Urano, J., Ishikawa, T., Tamanoi, F., Miao, J.: Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 107(25), 11234–11239 (2010)

    Google Scholar 

  2. Boutet, S., Lomb, L., Williams, G.J., Barends, T.R.M., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L., Messerschmidt, M., Barty, A., White, T.A., Kassemeyer, S., Kirian, R.A., Seibert, M.M., Montanez, P.A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S.M., Philipp, H.T., Tate, M.W., Hromalik, M., Koerner, L.J., van Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M.J., Caleman, C., Fromme, R., Hampton, C.Y., Hunter, M.S., Johansson, L.C., Katona, G., Kupitz, C., Liang, M.N., Martin, A.V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D.J., Zatsepin, N.A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J.C.H., Chapman, H.N., Schlichting, I.: High-resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364 (2012)

    Google Scholar 

  3. Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., Pfeiffer, F.: Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436–439 (2010)

    Google Scholar 

  4. Seibert, M.M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F.R.N.C., Bogan, M.J., Timneanu, N., Barty, A., Hau-Riege, S., Caleman, C., Frank, M., Benner, H., Lee, J.Y., Marchesini, S., Shaevitz, J.W., Fletcher, D.A., Bajt, S., Andersson, I., Chapman, H.N., Hajdu, J.: Femtosecond diffractive imaging of biological cells. J. Phys. B At. Mol. Opt. 43(19), 194015 (2010)

    Google Scholar 

  5. Henke, B.L., Gullikson, E.M., Davis, J.C: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. At. Data Nucl Data. Tables 54(2), 181–342 (1993)

    Google Scholar 

  6. Hardy, S.: Human Microbiology. Taylor and Francis, London (2002)

    Google Scholar 

  7. Plidschun, M.: Herstellung von nicht-periodischen Nanostrukturproben fuer XUV-Mikroskopie. Bachelor thesis, Friedrich-Schiller-University Jena (2013)

    Google Scholar 

  8. Young, K. D.: The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70(3), 660–703 (2006)

    Google Scholar 

  9. Seaberg, M.D., Adams, D.E., Townsend, E.L., Raymondson, D.A., Schlotter, W.F., Liu, Y.W., Menoni, C.S., Rong, L., Chen, C.C., Miao, J.W., Kapteyn, H.C., Murnane, M.M.: Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19(23), 22470–22479 (2011)

    Google Scholar 

  10. Szameit, A., Shechtman, Y., Osherovich, E., Bullkich, E., Sidorenko, P., Dana, H., Steiner, S., Kley, E.B., Gazit, S., Cohen-Hyams, T., Shoham, S., Zibulevsky, M., Yavneh, I., Eldar, Y.C., Cohen, O., Segev, M.: Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11(5), 455–459 (2012)

    Google Scholar 

  11. Sandberg, R.L., Song, C., Wachulak, P.W., Raymondson, D.A., Paul, A., Amirbekian, B., Lee, E., Sakdinawat, A.E., La, O., Vorakiat C., Marconi, M.C., Menoni, C.S., Murnane, M.M., Rocca, J.J., Kapteyn, H.C., Miao, J.: High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA 105(1), 24–27 (2008)

    Google Scholar 

  12. Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, H., London, R.A., Plonjes, E., Kuhlmann, M., Treusch, R., Dusterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Moller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., Van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szoke, A., Timneanu, N., Hajdu, J.: Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006)

    Google Scholar 

  13. Raines, K.S., Salha, S., Sandberg, R.L., Jiang, H., Rodriguez, J.A., Fahimian, B.P., Kapteyn, H.C., Du, J., Miao, J.: Three-dimensional structure determination from a single view. Nature 463(7278), 214–217 (2010)

    Google Scholar 

  14. Gardner, D.F., Zhang, B., Seaberg, M.D., Martin, L.S., Adams, D.E., Salmassi, F., Gullikson, E., Kapteyn, H., Murnane, M.: High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. Opt. Express 20(17), 19050–19059 (2012)

    Google Scholar 

  15. Chen, C.C., Jiang, H.D., Rong, L., Salha, S., Xu, R., Mason, T.G., Miao, J.W.: Three-dimensional imaging of a phase object from a single sample orientation using an optical laser. Phys. Rev. B 84(22), 224104 (2011)

    Google Scholar 

  16. Fienup, J.R., Crimmins, T.R., Holsztynski, W.: Reconstruction of the support of an object from the support of its auto-correlation. J. Opt. Soc. Am. 72(5), 610–624 (1982)

    Google Scholar 

  17. Marchesini, S., He, H., Chapman, H.N., Hau-Riege, S.P., Noy, A., Howells, M.R., Weierstall, U., Spence, J.C.H.: X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68(14), 140101 (2003)

    Google Scholar 

  18. Chapman, H.N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S.P., Cui, C., Howells, M.R., Rosen, R., He, H., Spence, J.C., Weierstall, U., Beetz, T., Jacobsen, C., Shapiro, D.: High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(5), 1179–1200 (2006)

    Google Scholar 

  19. Zuerch, M., Kern, C., Spielmann, C.: XUV coherent diffraction imaging in reflection geometry with low numerical aperture. Opt. Express 21(18), 21131–21147 (2013)

    Google Scholar 

  20. Martin, A.V., Wang, F., Loh, N.D., Ekeberg, T., Maia, F.R.N.C., Hantke, M., van der Schot, G., Hampton, C.Y., Sierra, R.G., Aquila, A., Bajt, S., Barthelmess, M., Bostedt, C., Bozek, J.D., Coppola, N., Epp, S.W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Graafsma, H., Gumprecht, L., Hartmann, A., Hartmann, R., Hauser, G., Hirsemann, H., Holl, P., Kassemeyer, S., Kimmel, N., Liang, M., Lomb, L., Marchesini, S., Nass, K., Pedersoli, E., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schulz, J., Shoeman, R.L., Soltau, H., Starodub, D., Steinbrener, J., Stellato, F., Strueder, L., Ullrich, J., Weidenspointner, G., White, T.A., Wunderer, C.B., Barty, A., Schlichting, I., Bogan, M.J., Chapman, H.N.: Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20(15), 16650–16661 (2012)

    Google Scholar 

  21. Sun, T., Jiang, Z., Strzalka, J., Ocola, L., Wang, J.: Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nat. Photon. 6(9), 588–592 (2012)

    Google Scholar 

  22. Weise, F., Neumark, D.M., Leone, S.R., Gessner, O.: Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source. Opt. Express 20(24), 26167–26175 (2012)

    Google Scholar 

  23. Tripathi, A., Mohanty, J., Dietze, S.H., Shpyrko, O.G., Shipton, E., Fullerton, E.E., Kim, S.S., McNulty, I.: Dichroic coherent diffractive imaging. Proc. Natl. Acad. Sci. USA 108(33), 13393–13398 (2011)

    Google Scholar 

  24. McClatchey, K.D.: Clinical Laboratory Medicine. Lippincott Williams and Wilkins, Philadelphia (2002)

    Google Scholar 

  25. Rosch, P., Harz, M., Schmitt, M., Peschke, K.D., Ronneberger, O., Burkhardt, H., Motzkus, H.W., Lankers, M., Hofer, S., Thiele, H., Popp, J.: Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71(3), 1626–1637 (2005)

    Google Scholar 

  26. Ashton, L., Lau, K., Winder, C.L., Goodacre, R.: Raman spectroscopy: lighting up the future of microbial identification. Future Microbiol. 6(9), 991–997 (2011)

    Google Scholar 

  27. Zuerch, M., Spielmann, C.: Patent: Verfahren zur Auswertung von durch schmalbandige, kurzwellige, kohaerente Laserstrahlung erzeugten Streubildern von Objekten, insbesondere zur Verwendung in der XUV-Mikroskopie. DE102012022966.6 - int. reg. PCT/DE2013/000696, 21 Nov 2012 (2012)

    Google Scholar 

  28. Williams, G.J., Quiney, H.M., Dhal, B.B., Tran, C.Q., Nugent, K.A., Peele, A.G., Paterson, D., de Jonge, M.D.: Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97(2), 025506 (2006)

    Google Scholar 

  29. Lendaris, G.G., Stanley, G.L.: Diffraction-pattern sampling for automatic pattern recognition. Pr. Inst. Electr. Elect. 58(2), 198–216 (1970)

    Google Scholar 

  30. Saleh, B.: Introduction to Subsurface Imaging. Cambridge University Press, New York (2011)

    Google Scholar 

  31. Mancuso, A.P., Gorniak, T., Staler, F., Yefanov, O.M., Barth, R., Christophis, C., Reime, B., Gulden, J., Singer, A., Pettit, M.E., Nisius, T., Wilhein, T., Gutt, C., Grubel, G., Guerassimova, N., Treusch, R., Feldhaus, J., Eisebitt, S., Weckert, E., Grunze, M., Rosenhahn, A., Vartanyants, I.A.: Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 12, 035003 (2010)

    Google Scholar 

  32. Garman, E.F., McSweeney, S.M.: Progress in research into radiation damage in cryo-cooled macromolecular crystals. J. Synchrotron. Radiat. 14(Pt 1), 1–3 (2007)

    Google Scholar 

  33. Howells, M.R., Beetz, T., Chapman, H.N., Cui, C., Holton, J.M., Jacobsen, C.J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D., Shapiro, D.A., Spence, J.C., Starodub, D.: An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J. Electron Spectros. Relat. Phenom. 170(1–3), 4–12 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Werner Zürch .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zürch, M.W. (2015). Lensless Imaging Results. In: High-Resolution Extreme Ultraviolet Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12388-2_4

Download citation

Publish with us

Policies and ethics