Skip to main content

Adaptive Estimation for Lévy Processes

  • Chapter
  • First Online:
Lévy Matters IV

Part of the book series: Lecture Notes in Mathematics ((LEVY,volume 2128))

Abstract

This chapter is concerned with nonparametric estimation of the Lévy density of a Lévy process. The sample path is observed at n equispaced instants with sampling interval Δ. We develop several nonparametric adaptive methods of estimation based on deconvolution, projection and kernel. The asymptotic framework is: n tends to infinity, Δ = Δ n tends to 0 while n Δ n tends to infinity (high frequency). Bounds for the \(\mathbb{L}^{2}\)-risk of estimators are given. Rates of convergence are discussed. Estimation of the drift and Gaussian component coefficients is studied. A specific method for estimating the jump density of compound Poisson processes is presented. Examples and simulation results illustrate the performance of estimators.

AMS Subject Classification 2000:

Primary: 62G05, 62M05

Secondary: 60G51

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aït-Sahalia, Y., & Jacod, J. (2007). Volatility estimators for discretely sampled Lévy processes. The Annals of Statistics, 35(1), 355–392.

    Article  MATH  MathSciNet  Google Scholar 

  2. Barndorff-Nielsen, O. E., & Shephard, N. (2001). Modelling by Lévy processes for financial econometrics. In Lévy processes (pp. 283–318). Boston, MA: Birkhäuser Boston.

    Chapter  Google Scholar 

  3. Barndorff-Nielsen, O. E., Shephard, N., & Winkel, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stochastic Processes and their Applications, 116(5), 796–806.

    Article  MATH  MathSciNet  Google Scholar 

  4. Barron, A., Birgé, L., & Massart, P. (1999). Risk bounds for model selection via penalization. Probability Theory and Related Fields, 113(3), 301–413.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bec, M., & Lacour, C. (2014). Adaptive kernel estimation of the Lévy density. Statistical Inference for Stochastic Processes (to appear).

    Google Scholar 

  6. Belomestny, D., & Reiß, M. (2006). Spectral calibration of exponential Lévy models. Finance and Stochastics, 10(4), 449–474.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertoin, J. (1996). Lévy processes. Cambridge tracts in mathematics (Vol. 121). Cambridge: Cambridge University Press. ISBN: 0-521-56243-0.

    Google Scholar 

  8. Birgé, L., & Massart, P. (1998). Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli, 4(3), 329–375.

    Article  MATH  MathSciNet  Google Scholar 

  9. Birgé, L., & Massart, P. (2007). Minimal penalties for Gaussian model selection. Probability Theory and Related Fields, 138(1–2), 33–73.

    Article  MATH  MathSciNet  Google Scholar 

  10. Buchmann, B., & Grübel, R. (2003). Decompounding: An estimation problem for Poisson random sums. The Annals of Statistics, 31(4), 1054–1074.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, S. X., Delaigle, A., & Hall, P. (2010). Nonparametric estimation for a class of Lévy processes. The Journal of Econometrics, 157(2), 257–271.

    Article  MathSciNet  Google Scholar 

  12. Chesneau, C., Comte, F., & Navarro, F. (2013). Fast nonparametric estimation for convolutions of densities. Canadian Journal of Statistics, 41(4), 617–636.

    Article  MATH  MathSciNet  Google Scholar 

  13. Comte, F., Duval, C., & Genon-Catalot, V. (2014). Nonparametric density estimation in compound Poisson processes using convolution power estimators. Metrika, 77(1), 163–183.

    Article  MATH  MathSciNet  Google Scholar 

  14. Comte, F., & Genon-Catalot, V. (2009). Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stochastic Processes and their Applications, 119(12), 4088–4123.

    Article  MATH  MathSciNet  Google Scholar 

  15. Comte, F., & Genon-Catalot, V. (2010). Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Statistica Neerlandica, 64(3), 290–313.

    Article  MathSciNet  Google Scholar 

  16. Comte, F., & Genon-Catalot, V. (2010). Nonparametric adaptive estimation for pure jump Lévy processes. Annales de Institut Henri Poincare (B) Probability and Statistics, 46(3), 595–617.

    Article  MATH  MathSciNet  Google Scholar 

  17. Comte, F., & Genon-Catalot, V. (2011). Estimation for Lévy processes from high frequency data within a long time interval. The Annals of Statistics, 39(2), 803–837.

    Article  MATH  MathSciNet  Google Scholar 

  18. Comte, F., & Lacour, C. (2011). Data-driven density estimation in the presence of additive noise with unknown distribution. Journal of the Royal Statistical Society Series B, 73(4), 601–627.

    Article  MATH  MathSciNet  Google Scholar 

  19. Comte, F., Rozenholc, Y., & Taupin, M.-L. (2006). Penalized contrast estimator for adaptive density deconvolution. Canadian Journal of Statistics, 34(3), 431–452.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Boca Raton, FL: Chapman & Hall/CRC. ISBN: 1-5848-8413-4.

    Google Scholar 

  21. DeVore, R. A., & Lorentz, G. G. (1993). Constructive approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences] (Vol. 303). Berlin: Springer. ISBN: 3-540-50627-6.

    Google Scholar 

  22. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1996). Density estimation by wavelet thresholding. The Annals of Statistics, 24(2), 508–539.

    Article  MATH  MathSciNet  Google Scholar 

  23. Duval, C. (2013). Density estimation for compound Poisson processes from discrete data. Stochastic Processes and their Applications, 123(11), 3963–3986.

    Article  MathSciNet  Google Scholar 

  24. Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281–299.

    Article  MATH  Google Scholar 

  25. Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events. Applications of mathematics (New York) (Vol. 33). Berlin: Springer. ISBN: 3-540-60931-8 (for insurance and finance).

    Google Scholar 

  26. Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. The Annals of Statistics, 19(3), 1257–1272.

    Article  MATH  MathSciNet  Google Scholar 

  27. Figueroa-López, J. E. (2008). Small-time moment asymptotics for Lévy processes. Statistics and Probability Letters, 78(18), 3355–3365.

    Article  MATH  MathSciNet  Google Scholar 

  28. Figueroa-López, J. E. (2009). Nonparametric estimation of Lévy models based on discrete-sampling. In Optimality. IMS lecture notes monograph series (Vol. 57, pp. 117–146). Beachwood, OH: Institute of Statistical Mathematics.

    Google Scholar 

  29. Figueroa-López, J. E., & Houdré, C. (2006). Risk bounds for the non-parametric estimation of Lévy processes. In High dimensional probability. IMS lecture notes monograph series (Vol. 51, pp. 96–116). Beachwood, OH: Institute of Statistical Mathematics.

    Google Scholar 

  30. Goldenshluger, A., & Lepski, O. (2011). Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. The Annals of Statistics, 39(3), 1608–1632.

    Article  MATH  MathSciNet  Google Scholar 

  31. Gugushvili, S. (2009). Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. Journal of Nonparametric Statistics, 21(3), 321–343.

    Article  MATH  MathSciNet  Google Scholar 

  32. Gugushvili, S. (2012). Nonparametric inference for discretely sampled Lévy processes. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 48(1), 282–307.

    Article  MATH  MathSciNet  Google Scholar 

  33. Hall, P., & Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic [Harcourt Brace Jovanovich Publishers]. ISBN: 0-12-319350-8. Probability and Mathematical Statistics.

    Google Scholar 

  34. Härdle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Wavelets, approximation, and statistical applications. Lecture notes in statistics (Vol. 129). New York: Springer. ISBN: 0-387-98453-4.

    Google Scholar 

  35. Hirsch, F., & Lacombe, G. (1999). Elements of functional analysis. Graduate texts in mathematics (Vol. 192). New York: Springer. ISBN: 0-387-98524-7. Translated from the 1997 French original by Silvio Levy.

    Google Scholar 

  36. Jacod, J. (2007). Asymptotic properties of power variations of Lévy processes. ESAIM Probability and Statistics, 11, 173–196.

    Article  MATH  MathSciNet  Google Scholar 

  37. Johannes, J. (2009). Deconvolution with unknown error distribution. The Annals of Statistics, 37(5A), 2301–2323.

    Article  MATH  MathSciNet  Google Scholar 

  38. Jongbloed, G., van der Meulen, F. H., & van der Vaart, A. W. (2005). Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli, 11(5), 759–791.

    Article  MATH  MathSciNet  Google Scholar 

  39. Kappus, J. (2014). Adaptive nonparametric estimation for Lévy processes observed at low frequency. Stochastic Process. Appl. 124(1), 730–758.

    Article  MATH  MathSciNet  Google Scholar 

  40. Kappus, J., & Reiß, M. (2010). Estimation of the characteristics of a Lévy process observed at arbitrary frequency. Statistica Neerlandica, 64(3), 314–328.

    Article  MathSciNet  Google Scholar 

  41. Katz, R. W. (2002). Stochastic modeling of hurricane damage. The Journal of Applied Meteorology, 41(7), 754–762.

    Article  Google Scholar 

  42. Kerkyacharian, G., Lepski, O., & Picard, D. (2001). Nonlinear estimation in anisotropic multi-index denoising. Probability Theory and Related Fields, 121(2), 137–170.

    Article  MATH  MathSciNet  Google Scholar 

  43. Klein, T., & Rio, E. (2005). Concentration around the mean for maxima of empirical processes. The Annals of Probability, 33(3), 1060–1077.

    Article  MATH  MathSciNet  Google Scholar 

  44. Küchler, U., & Tappe, S. (2008). Bilateral gamma distributions and processes in financial mathematics. Stochastic Processes and their Applications, 118(2), 261–283.

    Article  MATH  MathSciNet  Google Scholar 

  45. Lebedev, N. N. (1972). Special functions and their applications. New York: Dover Publications. Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication.

    MATH  Google Scholar 

  46. Madan, D. B., & Seneta, E. (1990). The variance gamma (v.g.) model for share market returns. The Journal of Business, 66(4), 511–524.

    Article  Google Scholar 

  47. Massart, P. (2007). Concentration inequalities and model selection. Lecture notes in mathematics (Vol. 1896). Berlin: Springer. ISBN: 978-3-540-48497-4; 3-540-48497-3. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard.

    Google Scholar 

  48. Meyer, Y. (1990). Ondelettes et opérateurs. I. Actualités Mathématiques [Current mathematical topics]. Paris: Hermann. ISBN: 2-7056-6125-0. Ondelettes [Wavelets].

    Google Scholar 

  49. Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution. Journal of Nonparametric Statistics, 7(4), 307–330.

    Article  MATH  MathSciNet  Google Scholar 

  50. Neumann, M. H., & Reiß, M. (2009). Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli, 15(1), 223–248.

    Article  MATH  MathSciNet  Google Scholar 

  51. Pensky, M., & Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution. The Annals of Statistics, 27(6), 2033–2053.

    Article  MATH  MathSciNet  Google Scholar 

  52. Sato, K.-i. (1999). Lévy processes and infinitely divisible distributions. Cambridge studies in advanced mathematics (Vol. 68). Cambridge: Cambridge University Press. ISBN: 0-521-55302-4. Translated from the 1990 Japanese original, Revised by the author.

    Google Scholar 

  53. Scalas, E. (2006). The application of continuous-time random walks in finance and economics. Physica A, 362(2), 225–239.

    Article  Google Scholar 

  54. Schick, A., & Wefelmeyer, W. (2004). Root n consistent density estimators for sums of independent random variables. Journal of Nonparametric Statistics, 16(6), 925–935.

    Article  MATH  MathSciNet  Google Scholar 

  55. Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer series in statistics. New York: Springer. ISBN: 978-0-387-79051-0. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.

    Google Scholar 

  56. Ueltzhöfer, F. A. J., & Klüppelberg, C. (2011). An oracle inequality for penalised projection estimation of Lévy densities from high-frequency observations. Journal of Nonparametric Statistics, 23(4), 967–989.

    Article  MATH  MathSciNet  Google Scholar 

  57. van Es, B., Gugushvili, S., & Spreij, P. (2007). A kernel type nonparametric density estimator for decompounding. Bernoulli, 13(3), 672–694.

    Article  MATH  MathSciNet  Google Scholar 

  58. Woerner, J. H. C. (2006). Power and multipower variation: Inference for high frequency data. In Stochastic finance (pp. 343–364). New York: Springer.

    Chapter  Google Scholar 

  59. Zhang, L., Mykland, P. A., & Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100(472), 1394–1411.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Céline Duval, as a coauthor of [13] which mainly corresponds to Sect. 10. We also wish to thank the referees for their careful reading and comments that helped improving the chapter. Last but not least, we are grateful to the editors of the Lévy Matters series for the invitation to contribute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Comte .

Appendix

Appendix

The Talagrand Inequality The result below follows from the Talagrand concentration inequality given in [43] and arguments in [8] (see the proof of their Corollary 2 p. 354).

Lemma A.1 (Talagrand Inequality)

Let \(Y _{1},\ldots,Y _{n}\) be independent random variables, let \(\nu _{n,Y }(f) = (1/n)\sum _{i=1}^{n}[f(Y _{i}) - \mathbb{E}(f(Y _{i}))]\) and let \(\mathcal{F}\) be a countable class of uniformly bounded measurable functions. Then for ε2 > 0

$$ \displaystyle\begin{array}{rcl} & & \mathbb{E}\Big[\sup _{f\in \mathcal{F}}\vert \nu _{n,Y }(f)\vert ^{2} - 2(1 + 2\epsilon ^{2})H^{2}\Big]_{ +} {}\\ & & \qquad \leq \frac{4} {K_{1}}\left (\frac{v} {n}e^{-K_{1}\epsilon ^{2} \frac{nH^{2}} {v} } + \frac{98M^{2}} {K_{1}n^{2}C^{2}(\epsilon ^{2})}e^{-\frac{2K_{1}C(\epsilon ^{2})\epsilon } {7\sqrt{2}} \frac{nH} {M} }\right ), {}\\ \end{array} $$

with \(C(\epsilon ^{2}) = \sqrt{1 +\epsilon ^{2}} - 1\), K1 = 1∕6, and

$$\displaystyle{\sup _{f\in \mathcal{F}}\|f\|_{\infty }\leq M,\;\;\;\; \mathbb{E}\Big[\sup _{f\in \mathcal{F}}\vert \nu _{n,Y }(f)\vert \Big] \leq H,\;\sup _{f\in \mathcal{F}}\frac{1} {n}\sum _{k=1}^{n}\mathrm{Var}(f(Y _{ k})) \leq v.}$$

By standard density arguments, this result can be extended to the case where \(\mathcal{F}\) is a unit ball of a linear normed space, after checking that \(f\mapsto \nu _{n}(f)\) is continuous and \(\mathcal{F}\) contains a countable dense family.

Lemma A.2 (The Rosenthal Inequality)

(see e.g. [33]) Let \((X_{i})_{1\leq i\leq n}\) be n independent centered random variables, such that \(\mathbb{E}(\vert X_{i}\vert ^{p}) < +\infty \) for an integer p ≥ 1. Then there exists a constant C(p) such that

$$\displaystyle{ \mathbb{E}\left (\left \vert \sum _{i=1}^{n}X_{ i}\right \vert ^{p}\right ) \leq C(p)\left (\sum _{ i=1}^{n}\mathbb{E}(\vert X_{ i}\vert ^{p}) + \left (\sum _{ i=1}^{n}\mathbb{E}(X_{ i}^{2})\right )^{p/2}\right ). }$$
(A.1)

Lemma A.3 (The Young Inequality)

(see [35]) Let f be a function belonging to \(\mathbb{L}^{p}(\mathbb{R})\) and g belonging to \(\mathbb{L}^{q}(\mathbb{R})\) , let p,q,r be real numbers in [1,+∞] and such that

$$\displaystyle{\frac{1} {p} + \frac{1} {q} = \frac{1} {r} + 1.}$$

Then

$$\displaystyle{\|f \star g\|_{r} \leq \| f\|_{p}\;\|g\|_{q}.}$$

where f ⋆ g is the convolution product and \(\|f\|_{p}^{p} =\int \vert f(x)\vert ^{p}\mathit{dx}\) . In particular, for p = 1, r = q = 2, we have \(\|f \star g\|_{2} \leq \| f\|_{1}\;\|g\|_{2}\) .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Comte, F., Genon-Catalot, V. (2015). Adaptive Estimation for Lévy Processes. In: Lévy Matters IV. Lecture Notes in Mathematics(), vol 2128. Springer, Cham. https://doi.org/10.1007/978-3-319-12373-8_2

Download citation

Publish with us

Policies and ethics