Skip to main content

Optimal Cumulative Sum Charting Procedures Based on Kernel Densities

  • Chapter
Frontiers in Statistical Quality Control 11

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Abstract

The cumulative sum (CUSUM) charting procedure is an important online monitoring procedure which is especially effective for detecting small and moderate shifts. In the design and implementation of an optimal CUSUM chart, the probability density function of an in-control process distribution is assumed to be known. If the density is not known or cannot be approximated using a known density, an optimal CUSUM chart cannot be implemented. We propose a CUSUM chart which does not require the density to be known. Kernel density estimation method will be used to estimate the density of an in-control process distribution. The performance of this chart is investigated for unimodal distributions. The results obtained reveal that this chart works well if we can obtain sufficient observations from an in-control process for kernel density and average run length estimations. An example is given to illustrate the design and implementation of this chart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  • Cencov, N. N. (1962). Evaluation of an unknown density from observations. Soviet Mathematics, 3, 1559–1562.

    Google Scholar 

  • Duda, R. O., Stork, D. G., & Hart, P. E. (2000). Pattern classification. New York: Wiley.

    Google Scholar 

  • Gan, F. F. (1991). An optimal design of CUSUM quality control charts. Journal of Quality Technology, 23, 279–286.

    Google Scholar 

  • Gan, F. F. (1994). Design of optimal exponential CUSUM control charts. Journal of Quality Technology, 26, 109–124.

    Google Scholar 

  • Gandy, A., & Kvaløy, J. T. (2013). Guaranteed conditional performance of control charts via bootstrap methods. Scandinavian Journal of Statistics. doi:10.1002/sjos.12006.

    Google Scholar 

  • Goel, A. L., & Wu, S. M. (1971). Determination of A.R.L. and a contour nomogram for CUSUM charts to control normal mean. Technometrics, 13, 221–230.

    Google Scholar 

  • Hawkins, D. M., & Olwell, D. H. (1997). Inverse Gaussian cumulative sum control charts for location and shape. Journal of the Royal Statistical Society: Series D (The Statistician), 46, 323–335.

    Google Scholar 

  • Hawkins, D. M., & Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement. New York: Springer.

    Book  MATH  Google Scholar 

  • Huang, W., Shu, L., Jiang, W., & Tsui, K. -L. (2013). Evaluation of run-length distribution for CUSUM charts under gamma distributions. IIE Transaction, 45, 981–994.

    Article  Google Scholar 

  • Knoth, S. (2005). Accurate ARL computation for EWMA-S 2 control charts. Statistics and Computing, 15, 341–352.

    Article  MathSciNet  Google Scholar 

  • Knoth, S. (2006). Computation of the ARL for CUSUM-S 2 schemes. Computational Statistics & Data Analysis, 51, 499–512.

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann, E. L. (1990). Model specifiction: the views of Fisher and Neyman, and later developments. Statistical Science, 5, 160–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distribution. The Annals of Statistics, 14, 1379–1387.

    Article  MATH  MathSciNet  Google Scholar 

  • Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41, 100–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Page, E. S. (1961). Cumulative sum charts. Technometrics, 3, 1–9.

    Article  MathSciNet  Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065–1076.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistic, 27, 832–837.

    Article  MATH  MathSciNet  Google Scholar 

  • Scott, D. W. (1992). Multivariate density estimation. New York: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • Shewhart, W. A. (1931). Economic control of quality of manufactured product. New York: D. Van Nostrand.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Vardeman, S., & Ray, D. (1985). Average run lengths for CUSUM schemes when observations are exponentially distributed. Technometrics, 27, 145–150.

    Article  MATH  MathSciNet  Google Scholar 

  • Wald, A. (1943). Sequential analysis of statistical data: Theory. A Report Submitted by the Statistical Research Group, Columbia University to the Applied Mathematics Panel, National Defense Research Committee, Sept 1943.

    Google Scholar 

  • Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16, 117–186.

    Article  MATH  MathSciNet  Google Scholar 

  • Wald, A. (1947). Sequential analysis. New York: Wiley.

    MATH  Google Scholar 

  • Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test. The Annals of Mathematical Statistics, 19, 326–339.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second and third authors are supported by the Academic Research Fund Tier 1 (R-155-000-137-112), Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fah Fatt Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Su, J.Y., Gan, F.F., Tang, X. (2015). Optimal Cumulative Sum Charting Procedures Based on Kernel Densities. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 11. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-12355-4_8

Download citation

Publish with us

Policies and ethics