Skip to main content

Strategies to Reduce the Probability of a Misleading Signal

  • Chapter
Book cover Frontiers in Statistical Quality Control 11

Abstract

Standard practice in statistical process control (SPC) is to run two individual charts, one for the process mean and another one for the process variance. The resulting scheme is known as a simultaneous scheme and it provides a way to satisfy Shewhart’s dictum that proper process control implies monitoring both location and dispersion.When we use a simultaneous scheme, the quality characteristic is deemed to be out-of-control whenever a signal is triggered by either individual chart. As a consequence, the misidentification of the parameter that has changed can occur, meaning that a shift in the process mean can be misinterpreted as a shift in the process variance and vice versa. These two events are known as misleading signals (MS) and can occur quite frequently.We discuss (necessary and) sufficient conditions to achieve values of probabilities of misleading signals (PMS) smaller than or equal to 0.5, explore, for instance, alternative simultaneous Shewhart-type schemes and check if they lead to PMS which are smaller than the ones of the popular \((\bar{X},\,S^{2})\) simultaneous scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the PMS of Type IV has the same value for \(\delta = -c\) as for δ = c, only positive values of δ are plotted or tabulated.

  2. 2.

    Even if those values refer to a simultaneous scheme used to monitor both decreases and increases in the process mean or variance.

References

  • Antunes, C. (2009). Avaliação do impacto da correlação em sinais Erróneos de esquemas Conjuntos para o valor esperado e variância (Assessment of the impact of the correlation on misleading signals in joint Schemes for the mean and variance). Master’s thesis, Instituto Superior Técnico, Technical University of Lisbon.

    Google Scholar 

  • Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix. Technometrics, 50, 155–166.

    Article  MathSciNet  Google Scholar 

  • Knoth, S., Morais, M. C., Pacheco, A., & Schmid, W. (2009). Misleading signals in simultaneous residual schemes for the mean and variance of a stationary process. Communications in Statistics - Theory and Methods, 38, 2923–2943.

    Article  MATH  MathSciNet  Google Scholar 

  • Morais, M. J. C. (2002). Stochastic ordering in the performance analysis of quality control schemes. Ph.D. thesis, Instituto Superior Técnico, Technical University of Lisbon.

    Google Scholar 

  • Morais, M. C., & Pacheco, A. (2000). On the performance of combined EWMA schemes for μ and σ: a Markovian approach. Communications in Statistics—Simulation and Computation, 29, 153–174.

    Google Scholar 

  • Morais, M. C., & Pacheco, A. (2006). Misleading signals in joint schemes for μ and σ. In H. J. Lenz, & P. Th. Wilrich (Eds.), Frontiers in Statistical Quality Control (Vol. 8, pp. 100–122). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Nelson, L. S. (1982). Control charts. In S. Kotz, & N. L. Johnson (Eds.-in-Chief), Encyclopedia of Statistical Sciences, (Vol. 2, pp. 176–183). New York: Wiley.

    Google Scholar 

  • Ramos, P. F., Morais, M. C., & Pacheco, A. (2013). Misleading signals in simultaneous residual schemes for the process mean and variance of AR(1) processes: a stochastic ordering approach. In J. L. Silva, F. Caeiro, I. Natário, & C. A. Braumann (Eds.), Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (pp. 161–170). Berlin: Springer-Verlag.

    Google Scholar 

  • Ramos, P. F., Morais, M. C., Pacheco, A., & Schmid, W. (2012). Assessing the impact of autocorrelation in misleading signals in simultaneous residual schemes for the process mean and variance: a stochastic ordering approach. In H. J. Lenz, P. Th. Wilrich, & W. Schmid (Eds.). Frontiers in Statistical Quality Control 10 (pp. 35–52). Heidelberg: Physica-Verlag.

    Chapter  Google Scholar 

  • Ramos, P. F., Morais, M. C., Pacheco, A., & Schmid, W. (2013a). Stochastic ordering in the qualitative assessment of the performance of simultaneous schemes for bivariate processes. Sequential Analysis, 32, 214–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Ramos, P. F., Morais, M. C., Pacheco, A., & Schmid, W. (2013b). Misleading signals in simultaneous schemes for the mean vector and the covariance matrix of a bivariate process. In P. E. Oliveira, M. G. Temido, M. Vichi, & C. Henriques (Eds.). Recent Developments in Modeling and Applications in Statistics – Studies in Theoretical and Applied Statistics (pp. 225–235). Berlin: Springer.

    Google Scholar 

  • Ramos, P. F., Morais, M. C., Pacheco, A., & Schmid, W. (2013c). On the misleading signals in simultaneous schemes for the mean vector and covariance matrix of multivariate i.i.d. output. (Accepted for publication in Statistical Papers; published on line in Feb. 2015).

    Google Scholar 

  • St. John, R. C. & Bragg, D. J. (1991). Joint X-bar R charts under shift in mu or sigma. ASQC Quality Congress Transactions (pp. 547–550). Milwaukee: American Society for Quality Control.

    Google Scholar 

  • Tang, P. F., & Barnett, N. S. (1996a). Dispersion control for multivariate processes. Australian Journal of Statistics, 38, 235–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, P. F., & Barnett, N. S. (1996b). Dispersion control for multivariate processes — some comparisons. Australian Journal of Statistics, 38, 253–273.

    Article  MATH  MathSciNet  Google Scholar 

  • Walsh, J. E. (1952). Operating characteristics for tests of the stability of a normal population. Journal of the American Statistical Association, 47, 191–202.

    Article  MATH  Google Scholar 

  • Wieringa, J. E. (1999). Statistical Process Control for Serially Correlated Data. Ph.D. thesis, Faculty of Economics, University of Groningen.

    Google Scholar 

  • Wikipedia (2012). Code of Hammurabi — Wikipedia, The Free Encyclopedia, Accessed from http://en.wikipedia.org/wiki/Code_of_hammurabi on 2012–11-21.

Download references

Acknowledgements

The first author gratefully acknowledges the financial support received from CEMAT (Centro de Matemática e Aplicações) to attend the XIth International Workshop on Intelligent Statistical Quality Control, Sydney, Australia, August 20–23, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cabral Morais .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section we present the necessary results to compute the probabilities in the denominator and numerator of the PMS of types III and IV:

  • \(P_{\delta,\theta }\left (T^{(i)} \in [\mathrm{LCL}_{\mu }^{(i)},\mathrm{UCL}_{\mu }^{(i)}],\,U^{(i)} \in [0,\mathrm{UCL}_{\sigma }^{(i)}]\right )\) equals

    $$\displaystyle{\begin{array}{ll} \left [\varPhi \left (\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right ) -\varPhi \left (-\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right )\right ] \times F_{\chi _{(n-1)}^{2}}\left (\frac{\gamma _{\sigma }^{(1)}} {\theta ^{2}} \right ), &i = 1 \\ \int _{0}^{\frac{\gamma _{\sigma }^{(2)}} {\theta ^{2}} }\left [\varPhi \left ( \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right ) -\varPhi \left (- \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right )\right ] \times f_{\chi _{(n-1)}^{2}}(x)\,\mathit{dx},&i = 2 \\ \int _{ -\frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta }}^{\frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta } }\phi (z) \times F_{\chi _{(n)}^{2}}\left (\max \left \{0,\gamma _{\sigma }^{(3)}/\theta ^{2} - (z +\delta /\theta )^{2}\right \}\right )\,dz, &i = 3; \end{array} }$$
  • \(P_{\delta,\theta }\left (T^{(i)}\not\in [\mathrm{LCL}_{\mu }^{(i)},\mathrm{UCL}_{\mu }^{(i)}],\,U^{(i)} \in [0,\mathrm{UCL}_{\sigma }^{(i)}]\right )\) is given by

    $$\displaystyle{\begin{array}{ll} \left \{1 -\left [\varPhi \left (\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right ) -\varPhi \left (-\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right )\right ]\right \} \times F_{\chi _{(n-1)}^{2}}\left (\frac{\gamma _{\sigma }^{(1)}} {\theta ^{2}} \right ), &i = 1 \\ \int _{0}^{\frac{\gamma _{\sigma }^{(2)}} {\theta ^{2}} }\left \{1 -\left [\varPhi \left ( \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right ) -\varPhi \left (- \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right )\right ]\right \} \times f_{\chi _{(n-1)}^{2}}(x)\,\mathit{dx},&i = 2 \\ \int _{-\infty }^{-\frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta } }\phi (z) \times F_{\chi _{(n-1)}^{2}}\left (\max \{0,\gamma _{\sigma }^{(3)}/\theta ^{2} - (z -\delta /\theta )^{2}\}\right )\,dz \\ +\int _{ \frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta }}^{\infty }\phi (z) \times F_{\chi _{(n)}^{2}}\left (\max \left \{0,\gamma _{\sigma }^{(3)}/\theta ^{2} - (z +\delta /\theta )^{2}\right \}\right )\,dz, &i = 3; \end{array} }$$
  • \(P_{\delta,\theta }\left (T^{(i)} \in [\mathrm{LCL}_{\mu }^{(i)},\mathrm{UCL}_{\mu }^{(i)}],\,U^{(i)}\not\in [0,\mathrm{UCL}_{\sigma }^{(i)}]\right )\) is equal to

    $$\displaystyle{\begin{array}{ll} \left [\varPhi \left (\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right ) -\varPhi \left (-\frac{\gamma _{\mu }^{(1)}} {\theta } -\frac{\delta }{\theta }\right )\right ] \times \left [1 - F_{\chi _{(n-1)}^{2}}\left (\frac{\gamma _{\sigma }^{(1)}} {\theta ^{2}} \right )\right ], &i = 1 \\ \int _{\frac{\gamma _{\sigma }^{(2)}} {\theta ^{2}} }^{\infty }\left [\varPhi \left ( \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right ) -\varPhi \left (- \frac{\gamma _{\mu }^{(2)}} {\sqrt{n-1}}\sqrt{x} -\frac{\delta }{\theta }\right )\right ] \times f_{\chi _{(n-1)}^{2}}(x)\,\mathit{dx},&i = 2 \\ \int _{ -\frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta }}^{\frac{\gamma _{\mu }^{(3)}} {\theta } -\frac{\delta }{\theta } }\phi (z) \times \left [1 - F_{\chi _{(n)}^{2}}\left (\max \left \{0,\gamma _{\sigma }^{(3)}/\theta ^{2} - (z +\delta /\theta )^{2}\right \}\right )\right ]\,dz, &i = 3. \end{array} }$$

The derivation of \(P_{\delta,\theta }(T^{(i)} \in [\mathrm{LCL}_{\mu }^{(i)},\mathrm{UCL}_{\mu }^{(i)}],\,U^{(i)} \in [0,\mathrm{UCL}_{\sigma }^{(i)}])\) follows closely Walsh (1952). The apparent differences are essentially due to the fact that Walsh (1952) represented the shift in the process mean (resp. standard deviation) by \(a = \sqrt{n}(\mu _{0}-\mu )/\sigma\) (resp. \(b =\sigma _{0}/\sigma\)), i.e., \(\delta = -a/b\) (resp. \(\theta = 1/b\)), and considered a chart for σ with a lower control limit.

The derivation of the remaining probabilities follows in a straightforward manner.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morais, M.C., Ramos, P.F., Pacheco, A. (2015). Strategies to Reduce the Probability of a Misleading Signal. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 11. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-12355-4_12

Download citation

Publish with us

Policies and ethics