Skip to main content

Comparison of Phase II Control Charts Based on Variable Selection Methods

  • Chapter

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Abstract

In recent years, control charts based on variable selection (VS) algorithms have been suggested for monitoring multivariate data. These charts share the common idea that process faults usually affect a small fraction of the monitored quality characteristics. Thus, VS methods can be used to identify the subset of the variables for which the shift may have occurred. However, the suggested VS-based control charts differ in many aspects such as the particular VS algorithm and the type of control statistic. In this paper, we compare VS-based control charts in various out-of-control scenarios characterizing modern manufacturing environments such as high-dimensional data, profile, and multistage process monitoring. The main aim of this paper is to provide practical guidelines for choosing a suitable VS-based monitoring scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23, 517–543.

    Article  Google Scholar 

  • Capizzi, G., & Masarotto, G. (2011). A least angle regression control chart for multidimensional data. Technometrics, 53, 285–296.

    Article  MathSciNet  Google Scholar 

  • Efron, E., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32, 407–499.

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang, W., Wang, K., & Tsung, F. (2012) A variable-selection-based multivariate EWMA chart for process monitoring and diagnosis. Journal of Quality Technology, 44, 209–230.

    Google Scholar 

  • Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted movin average control schemes: properties and enhancements. Technometrics, 32, 1–29.

    Article  MathSciNet  Google Scholar 

  • Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal of Control Optmization, 30, 838–855.

    Article  MATH  MathSciNet  Google Scholar 

  • Prabhu, S. S., & Runger, G. C. (1997). Designing a multivariate EWMA control chart. Journal of Quality Technology, 29, 8–15.

    Google Scholar 

  • Reynolds, M. R., & Stoumbos, Z. G. (2005). Should exponentially weighted moving average and cumulative sum charts be used with Shewhart limits? Technometrics, 47(4), 409–424.

    Article  MathSciNet  Google Scholar 

  • Reynolds, M. R., & Stoumbos, Z. G. (2006). Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance. Technometrics, 48(4), 550–567.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D. (1991). Stochastic approximation. In B. K. Ghosh, & P. K. Sen (Eds.), Handbook of sequential analysis (pp. 503–529). New York, NY: Marcel Dekker.

    Google Scholar 

  • Tibshirani, R. J. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MATH  MathSciNet  Google Scholar 

  • Wang, K., & Jiang, W. (2009). High-dimensional process monitoring and fault isolation via variable selection. Journal of Quality Technology, 41, 247–258.

    Google Scholar 

  • Zou, C., Ning, X., & Tsung, F. (2010). Lasso-based multivariate linear profile monitoring. Annals of Operation Research, 192, 3–19.

    Article  MathSciNet  Google Scholar 

  • Zou, C., & Qiu, P. (2009). Multivariate statistical process control using LASSO. Journal of American Statistical Association, 104, 1586–1596.

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, C., Tsung, F., & Wang, Z. (2008). Monitoring profiles based on nonparametric regression methods. Technometrics, 50, 512–526.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Capizzi .

Editor information

Editors and Affiliations

Appendix

Appendix

In the following, we provide details on the OC scenarios listed in the x axes of Fig. 1. When only variables or stages with an even (odd) index are subject to a shift of size δ, the OC scenario is indicated with either Even[δ] or Odd[δ].

  1. 1.

    Unstructured model: \(1 = (\beta _{1} = 0.5)\), \(2 = (\beta _{1} = 1)\), \(3 = (\beta _{3} = 0.5)\), \(4 = (\beta _{3} = 1)\), \(5 = (\beta _{1} = 0.5,\;\beta _{2} = 0.25)\), \(6 = (\beta _{1} = 0.5,\;\beta _{2} = 0.5)\), \(7 = (\beta _{1} = 0.5,\;\beta _{2} = 0.75)\), \(8 = (\beta _{1} = 0.5,\;\beta _{3} = 0.25)\) \(9 = (\beta _{1} = 0.5,\;\beta _{3} = 0.5)\), \(10 = (\beta _{1} = 0.5,\;\beta _{3} = 0.75)\), \(11 = (\beta _{3} = 0.5,\;\beta _{8} = 0.25)\), \(12 = (\beta _{3} = 0.5,\;\beta _{8} = 0.5)\), \(13 = (\beta _{3} = 0.5,\;\beta _{8} = 0.75)\), \(14 =\beta _{1} = 0.5,\;\beta _{2} = 0.25,\;\beta _{3} = 0.25)\), \(15 = (\beta _{1} = 0.25,\;\beta _{2} = 0.25,\;\beta _{3} = 0.5)\), \(16 = (\beta _{2} = 0.5,\;\beta _{3} = 0.25,\;\beta _{8} = 0.25)\), \(17 = (\beta _{2} = 0.25,\;\beta _{3} = 0.25,\;\beta _{8} = 0.5)\), \(18 = (\beta _{7} = 0.5,\;\beta _{8} = 0.25,\;\beta _{9} = 0.5)\), \(19 = (\beta _{7} = 0.25,\;\beta _{8} = 0.75,\;\beta _{9} = 0.5)\), \(20 = (\beta _{6} = 0.5,\;\beta _{8} = 0.25,\;\beta _{10} = 0.5)\), \(21 = (\beta _{6} = 0.25,\;\beta _{8} = 0.75,\;\beta _{10} = 0.5)\), 22 = (Even[0. 25]), 23 = (Even[0. 5]), 24 = (Odd[0. 25]), 25 = (Even[0. 5]), 26 = (Even[0. 5], Odd[0. 25]), 27 = (Odd[0. 5], Even[0. 25]), \(28 = (\omega = 1.2)\), \(29 = (\omega = 1.5)\), \(30 = (\omega = 2)\).

  2. 2.

    Linear profiles: \(1 = (\beta _{1} = 0.1)\), \(2 = (\beta _{1} = 0.3)\), \(3 = (\beta _{2} = 0.2)\), \(4 = (\beta _{2} = 0.5)\), \(5 = (\beta _{3} = 0.2)\), \(6 = (\beta _{3} = 0.5)\), \(7 = (\beta _{1} = 0.1,\;\beta _{2} = 0.1)\), \(8 = (\beta _{1} = 0.4,\;\beta _{2} = 0.2)\) \(9 = (\beta _{1} = 0.4,\;\beta _{2} = 0.6)\), \(10 = (\beta _{1} = 0.6,\;\beta _{2} = 0.6)\), \(11 = (\beta _{1} = 0.1,\;\omega = 1.2)\), \(12 = (\beta _{1} = 0.3,\;\omega = 1.2)\), \(13 = (\beta _{1} = 1,\;\omega = 1.2)\), \(14 = (\beta _{2} = 0.1,\;\omega = 1.2)\), \(15 = (\beta _{2} = 0.4,\;\omega = 1.2)\), \(16 = (\beta _{1} = 1.2,\;\omega = 1.2)\), \(17 = (\beta _{1} = 0.1,\;\beta _{2} = 0.1,\;\omega = 1.2)\), \(18 = (\beta _{1} = 0.4,\;\beta _{2} = 0.2,\;\omega = 1.2)\), \(19 = (\beta _{1} = 0.4,\;\beta _{2} = 0.6,\;\omega = 1.2)\), \(20 = (\beta _{1} = 0.6,\;\beta _{2} = 0.6,\;\omega = 1.2)\), \(21 = (\omega = 1.2)\), \(22 = (\omega = 1.5)\), \(23 = (\omega = 2)\).

  3. 3.

    Cubic profiles: \(1 = (\beta _{1} = 0.1)\), \(2 = (\beta _{1} = 0.3)\), \(3 = (\beta _{1} = 1)\), \(4 = (\beta _{2} = 0.2)\), \(5 = (\beta _{2} = 0.4)\), \(6 = (\beta _{2} = 1.2)\), \(7 = (\beta _{4} = 0.2)\), \(8 = (\beta _{4} = 0.5)\), \(9 = (\beta _{1} = 0.1,\;\beta _{2} = 0.1)\), \(10 = (\beta _{1} = 0.1,\;\beta _{3} = 0.2)\) \(11 = (\beta _{1} = 0.1,\;\beta _{4} = 0.2)\), \(12 = (\beta _{2} = 0.2,\;\beta _{3} = 0.2)\), \(13 = (\beta _{2} = 0.4,\;\beta _{4} = 0.2)\), \(14 = (\beta _{3} = 0.5,\;\beta _{4} = 0.5)\), \(15 = (\beta _{1} = 0.1,\;\beta _{2} = 0.1,\;\beta _{3} = 0.1)\), \(16 = (\beta _{1} = 0.1,\;\beta _{3} = 0.2,\;\beta _{4} = 0.1)\), \(17 = (\beta _{2} = 0.1,\;\beta _{3} = 0.3,\;\beta _{4} = 0.2)\), \(18 = (\beta _{1} = 0.1,\;\beta _{2} = 0.1,\;\beta _{3} = 0.1,\;\beta _{4} = 0.1)\), \(19 = (\beta _{1} = 0.1,\;\beta _{2} = 0.2,\;\beta _{3} = 0.1,\;\beta _{4} = 0.2)\), \(20 = (\beta _{1} = 0.2,\;\beta _{2} = 0.1,\;\beta _{3} = 0.2,\;\beta _{4} = 0.1)\), \(21 = (\omega = 1.2)\), \(22 = (\omega = 1.5)\), \(23 = (\omega = 2)\).

  4. 4.

    Non parametric profiles. The following OC scenarios are referred to possible shifts in the regression coefficients of models I, II and III. \(1 = (\mathrm{I},\beta _{1} = 1.00,\;\beta _{2} = 1.30)\), \(2 = (\mathrm{I},\beta _{1} = 1.00,\;\beta _{2} = 1.50)\), \(3 = (\mathrm{I},\beta _{1} = 1.10,\;\beta _{2} = 1.00)\) \(4 = (\mathrm{I},\beta _{1} = 1.30,\;\beta _{2} = 1.00)\), \(5 = (\mathrm{I},\beta _{1} = 1.20,\;\beta _{2} = 1.00,\;\omega = 1.10)\), \(6 = (\mathrm{I},\beta _{1} = 1.00,\;\beta _{2} = 1.20,\;\omega = 1.30)\), \(7 = (\mathrm{II},\beta _{1} = 0.10,\;\beta _{2} = 3.00)\), \(8 = (\mathrm{II},\beta _{1} = 0.30,\;\beta _{2} = 3.00)\), \(9 = (\mathrm{II},\beta _{1} = 0.10,\;\beta _{2} = 2.00)\) \(10 = (\mathrm{II},\beta _{1} = 0.30,\;\beta _{2} = 2.00)\), \(11 = (\mathrm{II},\beta _{1} = 0.20,\;\beta _{2} = 4.00,\;\omega = 1.10)\), \(12 = (\mathrm{II},\beta _{1} = 0.20,\;\beta _{2} = 4.00,\;\omega = 1.30)\) \(13 = (\mathrm{III},\beta _{1} = 2.00,\;\beta _{2} = 0.90)\), \(14 = (\mathrm{III},\beta _{1} = 4.00,\;\beta _{2} = 0.90)\), \(15 = (\mathrm{III},\beta _{1} = 2.00,\;\beta _{2} = 0.75)\), \(16 = (\mathrm{III},\beta _{1} = 4.00,\;\beta _{2} = 0.75)\), \(17 = (\mathrm{III},\beta _{1} = 2.00,\;\beta _{2} = 0.90,\;\omega = 1.20)\), \(18 = (\mathrm{III},\beta _{1} = 4.00,\;\beta _{2} = 0.75,\;\omega = 1.20)\).

  5. 5.

    Multistage process. In the following, β j indicates the shift of size β, occurring at the j-th stage, j = 1, , 20. \(1 = (\beta _{1} = 0.75)\), \(2 = (\beta _{5} = 0.75)\), \(3 = (\beta _{10} = 0.75)\), \(4 = (\beta _{1} = 1.5)\), \(5 = (\beta _{5} = 1.5)\), \(6 = (\beta _{10} = 1.5)\), \(7 = (\beta _{2} = 0.6,\;\beta _{8} = 0.6)\), \(8 = (\beta _{4} = 0.6,\;\beta _{5} = 0.6)\), \(9 = (\beta _{2} = 1.2,\;\beta _{8} = 1.2)\), \(10 = (\beta _{4} = 1.2,\;\beta _{5} = 1.2)\), \(11 = (\beta _{2} = 1.8,\;\beta _{8} = 1.8)\), \(12 = (\beta _{4} = 1.8,\;\beta _{5} = 1.8)\), \(13 = (\beta _{1} =\beta _{5} =\beta _{10} = 0.2,\;\beta _{3} =\beta _{7} = 0.4)\), \(14 = (\beta _{3} =\beta _{5} =\beta _{7} = 0.2,\;\beta _{4} =\beta _{6} = 0.4)\), \(15 = (\beta _{1} =\beta _{5} =\beta _{10} = 0.6,\;\beta _{3} =\beta _{7} = 0.4)\), \(16 = (\beta _{3} =\beta _{5} =\beta _{7} = 0.6,\;\beta _{4} =\beta _{6} = 0.4)\), 17 = (Even[0. 1], Odd[0. 2]), 18 = (Even[0. 5], Odd[0. 25]).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capizzi, G., Masarotto, G. (2015). Comparison of Phase II Control Charts Based on Variable Selection Methods. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 11. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-12355-4_10

Download citation

Publish with us

Policies and ethics