Advertisement

A Polynomial Turing-Kernel for Weighted Independent Set in Bull-Free Graphs

  • Stéphan Thomassé
  • Nicolas TrotignonEmail author
  • Kristina Vušković
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size \(k\), when \(k\) is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size \(k\). A polynomial kernel is unlikely to exist for this problem. We show however that our problem has a polynomial size Turing-kernel. More precisely, the hard cases are instances of size \({O}(k^5)\). All our results rely on a decomposition theorem of bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme decompositions, adapted to our computational purpose.

Notes

Acknowledgement

Thanks to Maria Chudnovsky for several suggestions. Thanks to Haiko Müller for pointing out to us [10]. Thanks to Sébastien Tavenas and the participants to GROW 2013 for useful discussions on Turing-kernels. Finally, the authors wish to thank the anonymous referees for their very helpful comments.

References

  1. 1.
    Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandstädt, A., Mosca, R.: Maximum weight independent sets in odd-hole-free graphs without dart or without bull (preprint)Google Scholar
  4. 4.
    Chudnovsky, M.: The structure of bull-free graphs I: Three-edge-paths with center and anticenters. J. Comb. Theory B 102(1), 233–251 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chudnovsky, M.: The structure of bull-free graphs II and III: A summary. J. Comb. Theory B 102(1), 252–282 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chudnovsky, M.: The structure of bull-free graphs II: Elementary trigraphs (manuscript)Google Scholar
  7. 7.
    Chudnovsky, M.: The structure of bull-free graphs III: Global structure (manuscript)Google Scholar
  8. 8.
    Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique number. J. Discrete Algorithms 14, 207–213 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity: Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electr. J. Comb. 11(1), 9 (2004)MathSciNetGoogle Scholar
  11. 11.
    Fernández-Baca, D. (ed.): LATIN 2012. LNCS, vol. 7256. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Fernau, H., Fomin, F., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernels for problems with no kernel: on out-trees with many leaves. In: STACS 2009Google Scholar
  13. 13.
    Habib, M., Mamcarz, A., de Montgolfier, F.: Algorithms for some \(H\)-join decompositions. In: Fernández-Baca [11], pp. 446–457Google Scholar
  14. 14.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hermelin, D., Kratsch, S., Sołtys, K., Wahlström, M., Wu, X.: A completeness theory for polynomial (turing) kernelization. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 202–215. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lokshtanov, D.: New methods in parameterized algorithms and complexity. Ph.D. Thesis, University of Bergen (2009)Google Scholar
  17. 17.
    Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in \(p_5\)-free graphs in polynomial time, 2014. In: SODA 2014Google Scholar
  18. 18.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Poljak, S.: A note on the stable sets and coloring of graphs. Commentationes Math. Univ. Carol. 15, 307–309 (1974)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13(1), 145–147 (1972)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency, vol. A, B and C. Springer, New York (2003)zbMATHGoogle Scholar
  22. 22.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stéphan Thomassé
    • 1
  • Nicolas Trotignon
    • 2
    Email author
  • Kristina Vušković
    • 3
  1. 1.CNRS, LIP, ENS de Lyon, INRIAUniversité de LyonLyonFrance
  2. 2.Faculty of Computer Science, School of ComputingUniversity of LeedsLeedsUK
  3. 3.(RAF)Union UniversityBelgradeSerbia

Personalised recommendations