# Between Treewidth and Clique-Width

• Sigve Hortemo Sæther
• Jan Arne Telle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

## Abstract

Many hard graph problems can be solved efficiently when restricted to graphs of bounded treewidth, and more generally to graphs of bounded clique-width. But there is a price to be paid for this generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that are all FPT parameterized by treewidth but none of which can be FPT parameterized by clique-width unless the Exponential Time Hypothesis fails, as shown by Fomin et al. [7]. We therefore seek a structural graph parameter that shares some of the generality of clique-width without paying this price.

Based on splits, branch decompositions and the work of Vatshelle [16] on Maximum Matching-width, we consider the graph parameter sm-width which lies between treewidth and clique-width. Some graph classes of unbounded tree-width, like distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized by sm-width.

## References

1. 1.
Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput. Sci. 412(39), 5187–5204 (2011)
2. 2.
Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)
3. 3.
Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)
4. 4.
Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
5. 5.
Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
6. 6.
Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Alg. Discrete Methods 3(2), 214–228 (1982)
7. 7.
Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized by clique-width. In: Proceedings SODA, pp. 493–502 (2010)Google Scholar
8. 8.
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)
9. 9.
Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012)
10. 10.
Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P., Ramadurai, R.: When trees grow low: shrubs and fast MSO$$_1$$. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419–430. Springer, Heidelberg (2012)
11. 11.
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
12. 12.
Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)
13. 13.
Rao, M.: Solving some NP-complete problems using split decomposition. Discrete Appl. Math. 156(14), 2768–2780 (2008)
14. 14.
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)
15. 15.
Sæther, S.H., Telle, J.A.: Between treewidth and clique-width. CoRR, abs/1404.7758 (2014)Google Scholar
16. 16.
Vatshelle, M.: New width parameters of graphs. Ph.D. Thesis, The University of Bergen (2012)Google Scholar