Advertisement

Between Treewidth and Clique-Width

  • Sigve Hortemo SætherEmail author
  • Jan Arne Telle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

Many hard graph problems can be solved efficiently when restricted to graphs of bounded treewidth, and more generally to graphs of bounded clique-width. But there is a price to be paid for this generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that are all FPT parameterized by treewidth but none of which can be FPT parameterized by clique-width unless the Exponential Time Hypothesis fails, as shown by Fomin et al. [7]. We therefore seek a structural graph parameter that shares some of the generality of clique-width without paying this price.

Based on splits, branch decompositions and the work of Vatshelle [16] on Maximum Matching-width, we consider the graph parameter sm-width which lies between treewidth and clique-width. Some graph classes of unbounded tree-width, like distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized by sm-width.

References

  1. 1.
    Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput. Sci. 412(39), 5187–5204 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Alg. Discrete Methods 3(2), 214–228 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized by clique-width. In: Proceedings SODA, pp. 493–502 (2010)Google Scholar
  8. 8.
    Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P., Ramadurai, R.: When trees grow low: shrubs and fast MSO\(_1\). In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419–430. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rao, M.: Solving some NP-complete problems using split decomposition. Discrete Appl. Math. 156(14), 2768–2780 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sæther, S.H., Telle, J.A.: Between treewidth and clique-width. CoRR, abs/1404.7758 (2014)Google Scholar
  16. 16.
    Vatshelle, M.: New width parameters of graphs. Ph.D. Thesis, The University of Bergen (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations