Skip to main content

DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents’ navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy \(\mathcal {R} \supset \mathcal {B} \supset \mathcal {P}\) of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in \(\mathcal {R}\), limited approximability in \(\mathcal {B}\), and tractability in \(\mathcal {P}\). We also give topologies in which DMVP in \(\mathcal {R}\) is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)

    Google Scholar 

  2. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs (2014). http://arxiv.org/abs/1407.7279

  3. Ahr, D., Reinhelt, G.: A tabu search algorithm for the min-max k-Chinese postman problem. Comput. Oper. Res. 33(12), 3403–3422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distrib. Comput. 24(1), 31–44 (2011)

    Article  MATH  Google Scholar 

  6. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. JACM 9(1), 61–63 (1962)

    Article  MATH  Google Scholar 

  7. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of 26th STOC, pp. 163–171 (1994)

    Google Scholar 

  8. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPED 27(5), 387–408 (2012)

    Google Scholar 

  10. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Choset, H.: Coverage for robotics: a survey of recent results. Ann. Math. AI 31, 113–126 (2001)

    Google Scholar 

  12. Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms. In: Springer Tracts in Advanced Robotics, vol. 39, pp. 471–480 (2008)

    Google Scholar 

  13. Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: Proceedings of ICRA, pp. 727–734 (2005)

    Google Scholar 

  14. Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: Proceedings of 39th STOC (2007)

    Google Scholar 

  16. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Hopcroft, J., Karp, R.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  22. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: ACM Symposium on Theory of Computing (2010)

    Google Scholar 

  23. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)

    Article  Google Scholar 

  24. Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Wagner, A., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)

    Article  Google Scholar 

  27. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. IJ Found. Comput. Sci. 14(02), 267–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Krizanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Aaron, E., Krizanc, D., Meyerson, E. (2014). DMVP: Foremost Waypoint Coverage of Time-Varying Graphs. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics