Advertisement

Graph-TSP from Steiner Cycles

  • Satoru Iwata
  • Alantha NewmanEmail author
  • R. Ravi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

We present an approach for the traveling salesman problem with graph metric based on Steiner cycles. A Steiner cycle is a cycle that is required to contain some specified subset of vertices. For a graph \(G\), if we can find a spanning tree \(T\) and a simple cycle that contains the vertices with odd-degree in \(T\), then we show how to combine the classic “double spanning tree” algorithm with Christofides’ algorithm to obtain a TSP tour of length at most \(\frac{4n}{3}\). We use this approach to show that a graph containing a Hamiltonian path has a TSP tour of length at most \(4n/3\).

Since a Hamiltonian path is a spanning tree with two leaves, this motivates the question of whether or not a graph containing a spanning tree with few leaves has a short TSP tour. The recent techniques of Mömke and Svensson imply that a graph containing a depth-first-search tree with \(k\) leaves has a TSP tour of length \(4n/3 + O(k)\). Using our approach, we can show that a \(2(k-1)\)-vertex connected graph that contains a spanning tree with at most \(k\) leaves has a TSP tour of length \(4n/3\). We also explore other conditions under which our approach results in a short tour.

References

  1. 1.
    Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs (2011). arXiv preprint arXiv:1101.5586
  2. 2.
    Aldred, R.E., Bau, S., Holton, D.A., McKay, B.D.: Cycles through 23 vertices in 3-connected cubic planar graphs. Graphs Comb. 15(4), 373–376 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)zbMATHGoogle Scholar
  4. 4.
    Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and subcubic graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 65–77. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)Google Scholar
  6. 6.
    Chvatal, V.: New directions in Hamiltonian graph theory. In: Harary, F. (ed.) New Directions in Graph Theory. Academic press, London (1973)Google Scholar
  7. 7.
    Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discrete Math. 2(2), 111–113 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer polyhedra. Math. program. 33(1), 1–27 (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dirac, G.: Some theorems on abstract graphs. Proce. Lond. Math. Soc. 3(1), 69–81 (1952)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dirac, G.: Short proof of Menger’s graph theorem. Mathematika 13(1), 42–44 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fournier, I.: Cycles et numérotations de graphes. These d’Etat, LRI, Université de Paris-Sud (1985)Google Scholar
  12. 12.
    Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 550–559. IEEE (2011)Google Scholar
  13. 13.
    González, J.J.S.: The Steiner cycle polytope. Eur. J. Oper. Res. 147(3), 671–679 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gupta, S.: Towards a \(\frac{4}{3}\)-approximation for the metric traveling salesman problem. Master’s thesis, Indian Institute of Technology, Delhi, May 2011Google Scholar
  15. 15.
    Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4), 422–437 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holton, D.A., McKay, B.D., Plummer, M.D., Thomassen, C.: A nine point theorem for 3-connected graphs. Combinatorica 2(1), 53–62 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoogeveen, J.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10(1), 96–115 (1927)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 560–569 (2011)Google Scholar
  20. 20.
    Mucha, M.: \(\frac{13}{9}\)-approximation for graphic TSP. Theory Comput. Syst. 1–18 (2012)Google Scholar
  21. 21.
    Ozeki, K., Yamashita, T.: A degree sum condition concerning the connectivity and the independence number of a graph. Graphs Comb. 24(5), 469–483 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs (2012). arXiv preprint arXiv:1201.1870
  24. 24.
    Shi, R.: 2-neighborhoods and Hamiltonian conditions. J. Graph Theory 16(3), 267–271 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Steinová, M.: Approximability of the minimum Steiner cycle problem. Comput. Inf. 29(6+), 1349–1357 (2012)Google Scholar
  26. 26.
    Vishnoi, N.K.: A permanent approach to the traveling salesman problem. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 76–80. IEEE (2012)Google Scholar
  27. 27.
    Zamfirescu, T.: Three small cubic graphs with interesting Hamiltonian properties. J. Graph Theory 4(3), 287–292 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan
  2. 2.CNRS-Université Grenoble Alpes and G-SCOPGrenobleFrance
  3. 3.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations