Advertisement

Colored Modular and Split Decompositions of Graphs with Applications to Trigraphs

  • Michel Habib
  • Antoine MamcarzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

We introduce the colored decompositions framework, in which vertices of the graph can be equipped with colors, and in which the goal is to find decompositions of this graph that do not separate the color classes. In this paper, we give two linear time algorithms for the colored modular and split decompositions of graphs, and we apply them to give linear time algorithms for the modular and split decompositions of trigraphs, which improves a result of Thomassé, Trotignon and Vuskovic (2013). As a byproduct, we introduce the non-separating families that allow us to prove that those two decompositions have the same properties on graphs and on trigraphs.

References

  1. 1.
    Bui-Xuan, B.-M., Habib, M., Rao, M.: Tree-representation of set families and applications to combinatorial decompositions. Eur. J. Comb. 33(5), 688–711 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cerioli, M.R., Everett, H., de Figueiredo, C.M.H., Klein, S.: The homogeneous set sandwich problem. IPL 67(1), 31–35 (1998)CrossRefGoogle Scholar
  3. 3.
    Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chudnovsky, M.: Berge trigraphs and their applications. Ph.D. thesis, Princeton University (2003)Google Scholar
  6. 6.
    Chudnovsky, M.: Berge trigraphs. J. Graph Theory 48, 85–111 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chudnovsky, M.: The structure of bull-free graphs i. J. Comb. Theory Ser. B 102(1), 233–251 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chudnovsky, M., Seymour, P.: Claw-free graphs. iv. decomposition theorem. J. Comb. Theory, Ser. B 98(5), 839–938 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chudnovsky, M., Trotignon, N., Trunck, T., Vuskovic, K.: Coloring perfect graphs with no balanced skew-partitions. CoRR, abs/1308.6444 (2013)Google Scholar
  10. 10.
    Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, Sophie (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad. J. Math 32(3), 734–765 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition (extended abstract). In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de Montgolfier, F.: Décomposition modulaire des graphes: théorie, extensions et algorithmes. Ph.D. thesis, Université Montpellier 2 (2003)Google Scholar
  15. 15.
    Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Scientiarum Hung. 18(1–2), 25–66 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Habib, M., Mamcarz, A., Montgolfier, F.: Computing h-joins with application to 2-modular decomposition. Algorithmica 70(2), 245–266 (2014)MathSciNetGoogle Scholar
  17. 17.
    Mamcarz, A.: Some applications of vertex splitting for graph algorithms. Ph.D. thesis, University of Paris 7 (2014)Google Scholar
  18. 18.
    McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1–3), 189–241 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Thomassé, S., Trotignon, N., Vuskovic, K.: Parameterized algorithm for weighted independent set problem in bull-free graphs. CoRR, abs/1310.6205 (2013)Google Scholar
  21. 21.
    Trotignon, N., Vušković, K.: A structure theorem for graphs with no cycle with a unique chord and its consequences. ArXiv e-prints, September 2013Google Scholar
  22. 22.
    Trotignon, N.: Complexity of some trigraph problems. Private communication, 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LIAFA UMR 7089CNRS and Université Paris Diderot - Paris 7ParisFrance

Personalised recommendations