Induced Disjoint Paths in Circular-Arc Graphs in Linear Time

  • Petr A. GolovachEmail author
  • Daniël Paulusma
  • Erik Jan van Leeuwen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)


The Induced Disjoint Paths problem is to test whether a graph \(G\) with \(k\) distinct pairs of vertices \((s_{i},t_{i})\) contains paths \(P_{1},\ldots ,P_{k}\) such that \(P_{i}\) connects \(s_{i}\) and \(t_{i}\) for \(i=1,\ldots ,k\), and \(P_{i}\) and \(P_{j}\) have neither common vertices nor adjacent vertices (except perhaps their ends) for \(1 \le i < j \le k\). We present a linear-time algorithm that solves Induced Disjoint Paths and finds the corresponding paths (if they exist) on circular-arc graphs. For interval graphs, we exhibit a linear-time algorithm for the generalization of Induced Disjoint Paths where the pairs \((s_{i},t_{i})\) are not necessarily distinct.


  1. 1.
    Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kaminski, M., Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica 69, 501–521 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90, 85–92 (1991). See also Corrigendum, Discrete Mathematics 102 (1992), 109MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Diestel, R.: Graph Theory. Springer, New York (2005). Electronic EditionzbMATHGoogle Scholar
  5. 5.
    Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. In: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, Contemporary Mathematics, vol. 89, pp. 1–18. American Mathematical Society, Providence (1989)Google Scholar
  6. 6.
    Fiala, J., Kamiński, M., Lidicky, B., Paulusma, D.: The \(k\)-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. In: Proceedings of SODA 2014, pp. 582–593. SIAM (2014)Google Scholar
  8. 8.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-Free graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 153–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 515–526. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in circular-arc graphs in linear time. CoRR abs/1403.0789 (2014)Google Scholar
  11. 11.
    Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. J. Algorithms 9, 56–63 (1988)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gurski, F., Wanke, E.: Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci. 359, 188–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heggernes, P., van ’t Hof, P., van Leeuwen, E.J., Saei, R.: Finding disjoint paths in split graphs. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 315–326. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kobayashi, Y., Kawarabayashi, K.: A linear time algorithm for the induced disjoint paths problem in planar graphs. J. Comput. Syst. Sci. 78, 670–680 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs SIAM. J. Comput. 18, 68–81 (1989)zbMATHGoogle Scholar
  18. 18.
    Kramer, M., van Leeuwen, J.: The complexity of wirerouting and finding minimum area layouts for arbitrary VLSI circuits. Adv. Comput. Res. 2, 129–146 (1984)Google Scholar
  19. 19.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsl. 5, 31–36 (1975)CrossRefGoogle Scholar
  20. 20.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic J. Comput. 3, 256–270 (1996)MathSciNetGoogle Scholar
  22. 22.
    Reed, B.A.: Tree width and tangles: A new connectivity measure and some applications. In: Bailey, R.A. (ed.) Surveys in Combinatorics, pp. 87–162. Cambridge University Press, Cambridge (1997)Google Scholar
  23. 23.
    Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. In: Robertson, N., Seymour, P.D. (eds.) Contemporary Mathematics, vol. 147, pp. 295–301. American Mathematical Society, Robertson (1993)Google Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Petr A. Golovach
    • 1
    Email author
  • Daniël Paulusma
    • 2
  • Erik Jan van Leeuwen
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computer ScienceDurham UniversityDurhamUK
  3. 3.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations