Skip to main content

Techno-economics of Algal Biodiesel

  • Chapter
  • First Online:
Algae Biotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Algal biodiesel production presents a possible carbon-neutral source of transportation fuel. Whilst algal biodiesel circumvents some of the issues arising from the use of crop- and waste–biomass-based fuels, the lack of commercial success raises questions regarding the feasibility of the process. Numerous economic and environmental impact assessments have produced highly variable results, predicting costs from as little as 0.42–72 USD L−1. A meta-analysis of these assessments reveals that areal productivity and provision of nutrients, as well as energy and water usage, are the key challenges to algal biodiesel production. A consideration of maximum achievable photosynthetic activity indicates that some scope exists for increasing areal productivity; hence, the factors influencing productivity are discussed in detail. Carbon dioxide supply may represent the single most important challenge to algal biodiesel, while recycling of other nutrients (specifically nitrogen and phosphate) is essential. Finally, a careful balance must be struck between energy and water consumption; this balance is primarily influenced by bioreactor design. It is unlikely that algal biodiesel will supply a substantial portion of the world’s transportation energy demand, but it may fill niche markets such as aviation fuel. Process economics are enhanced by integrating biodiesel production into a biorefinery, producing a suite of products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién, F. G., Fernández, J. M., Magán, J. J., & Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30, 1344–1353. doi:10.1016/j.biotechadv.2012.02.005.

    Article  Google Scholar 

  • Amer, L., Adhikari, B., & Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology, 102, 9350–9359. doi:10.1016/j.biortech.2011.08.010.

    Article  Google Scholar 

  • Ameritrade, L. M, Stanley M, et al. (2014). YCharts.

    Google Scholar 

  • ASTM. (2003). Reference solar spectral irradiance: Air mass 1.5. In: American society for testing and materials (ASTM) terrestrial reference spectra for photovoltaic performance evaluation http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed December 2, 2014.

  • Azadi, P., Brownbridge, G., Mosbach, S., et al. (2014). The carbon footprint and non-renewable energy demand of algae-derived biodiesel. Applied Energy, 113, 1632–1644. doi:10.1016/j.apenergy.2013.09.027.

    Article  Google Scholar 

  • Barnes, C., Tibbitts, T., Sager, J., et al. (1993). Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. HortScience, 28, 1197–1200.

    Google Scholar 

  • Batan, L., & Quinn, J. (2010). Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environmental Science and Technology, 44, 7975–7980.

    Article  Google Scholar 

  • Behrenfeld, M., & Falkowski, P. G. (1997). A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42, 1479–1491. doi:10.4319/lo.1997.42.7.1479.

    Article  Google Scholar 

  • Blankenship, R. E., Tiede, D. M., Barber, J., et al. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332, 805–880. doi:10.1126/science.1200165.

    Article  Google Scholar 

  • Borowitzka, M. A., & Moheimani, N. R. (2013). Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang, 18, 13–25. doi:10.1007/s11027-010-9271-9.

    Article  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577. doi:10.1016/j.rser.2009.10.009.

    Article  Google Scholar 

  • Brownbridge, G., Azadi, P., Smallbone, A., et al. (2014). The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresource Technology, 151, 166–173. doi:10.1016/j.biortech.2013.10.062.

    Article  Google Scholar 

  • Cai, T., Park, S. Y., Racharaks, R., & Li, Y. (2013). Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy, 108, 486–492. doi:10.1016/j.apenergy.2013.03.056.

    Article  Google Scholar 

  • Campbell, P. K., Beer, T., & Batten, D. (2011). Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology, 102, 50–56. doi:10.1016/j.biortech.2010.06.048.

    Article  Google Scholar 

  • Carvalho, A., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22, 1490.

    Article  Google Scholar 

  • Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16, 427–431. doi:10.1016/j.tplants.2011.03.011.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306. doi:10.1016/j.biotechadv.2007.02.001.

    Article  Google Scholar 

  • Chisti, Y. (2013a). Constraints to commercialization of algal fuels. Journal of Biotechnology, 167, 201–214. doi:10.1016/j.jbiotec.2013.07.020.

    Article  Google Scholar 

  • Chisti, Y. (2013b). Raceways-based production of algal crude oil. Green. doi:10.1515/green-2013-0018.

    Google Scholar 

  • Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702. doi:10.1016/j.biotechadv.2011.05.015.

    Article  Google Scholar 

  • Clarens, A., & Resurreccion, E. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science and Technology, 44, 1813–1819.

    Article  Google Scholar 

  • Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Glob Environ Chang, 19, 292–305. doi:10.1016/j.gloenvcha.2008.10.009.

    Article  Google Scholar 

  • Davis, R., Aden, A., & Pienkos, P. T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88, 3524–3531. doi:10.1016/j.apenergy.2011.04.018.

    Article  Google Scholar 

  • Davis, R., Fishman, D., Frank, E., & Wigmosta, M. (2012). Renewable diesel from algal lipids: An integrated baseline for cost, emissions, and resource potential from a harmonized model.

    Google Scholar 

  • Dawson, C. J., & Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, S14–S22. doi:10.1016/j.foodpol.2010.11.012.

    Article  Google Scholar 

  • Delrue, F., Setier, P., Sahut, C., et al. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresource Technology, 111, 191–200. doi:10.1016/j.biortech.2012.02.020.

    Article  Google Scholar 

  • Duffie, J. A., Beckman, W. A. (2013). Solar engineering of thermal processes (Vol. 936). New York: Wiley.

    Google Scholar 

  • Eberle, D. U., & von Helmolt, D. R. (2010). Sustainable transportation based on electric vehicle concepts: A brief overview. Energy & Environmental Science, 3, 689. doi:10.1039/c001674h.

    Article  Google Scholar 

  • Escobar, J. C., Lora, E. S., Venturini, O. J., et al. (2009). Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews, 13, 1275–1287. doi:10.1016/j.rser.2008.08.014.

    Article  Google Scholar 

  • Ferreira, A. F., Ribeiro, L. A., Batista, A. P., et al. (2013). A biorefinery from Nannochloropsis sp. microalga—energy and CO2 emission and economic analyses. Bioresour Technol 138, 235–244. doi:10.1016/j.biortech.2013.03.168.

    Google Scholar 

  • Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences USA, 106, 10219–10223. doi:10.1073/pnas.0812619106.

    Article  Google Scholar 

  • Griffiths, M., van Hille, R., & Harrison, S. (2012). Lipid productivity, settling potential and fatty acid profile of eleven microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology, 24, 989–1001.

    Article  Google Scholar 

  • Griffiths, M. J., van Hille, R. P., & Harrison, S. T. L. (2010). Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids, 45, 1053–1060.

    Article  Google Scholar 

  • Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507. doi:10.1007/s10811-008-9392-7.

    Article  Google Scholar 

  • Harding, K. (2009). A generic approach to environmental assessment of microbial bioprocesses through life cycle assessment. South Africa: University of Cape Town.

    Google Scholar 

  • Harrison, S., Richardson, C., & Griffiths, M. (2013). Analysis of microalgal biorefineries for bioenergy from an environmental and economic perspective focus on algal biodiesel. In F. Bux (Ed.), Biotechnol. Applied Microalgae Biodiesel Value-Added Prod (pp. 113–136). USA: CRC Press.

    Chapter  Google Scholar 

  • Harto, C., Meyers, R., & Williams, E. (2010). Life cycle water use of low-carbon transport fuels. Energy Policy, 38, 4933–4944. doi:10.1016/j.enpol.2010.03.074.

    Article  Google Scholar 

  • Harun, R., Davidson, M., Doyle, M., et al. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35, 741–747. doi:10.1016/j.biombioe.2010.10.007.

    Article  Google Scholar 

  • Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047. doi:10.1016/j.rser.2009.11.004.

    Article  Google Scholar 

  • Hoepffner, N., & Sathyendranath, S. (1993). Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. Journal Geophysical Research, 98, 22789. doi:10.1029/93JC01273.

    Article  Google Scholar 

  • Horta Nogueira, L. A., Moreira, J. R., Schuchardt, U., & Goldemberg, J. (2013). The rationality of biofuels. Energy Policy, 61, 595–598. doi:10.1016/j.enpol.2013.05.112.

    Article  Google Scholar 

  • InfoMine. (2014) Infomine.

    Google Scholar 

  • International Energy Agency. (2011). Technology roadmap: Biofuels for transport. doi:10.1787/9789264118461-en.

  • Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: Versatility for the future of bioenergy. Current Opinion in Biotechnology, 23, 346–351. doi:10.1016/j.copbio.2011.10.013.

    Article  Google Scholar 

  • Jones, S. M., & Harrison, S. T. L. (2014). Aeration energy requirements for lipid production by Scenedesmus in airlift bioreactors. Algal Research 5, 249–257. doi:10.1016/j.algal2014-.03.003.

  • Jorquera, O., Kiperstok, A., Sales, E. A., et al. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 101, 1406–1413. doi:10.1016/j.biortech.2009.09.038.

    Article  Google Scholar 

  • Kyewalyanga, M., Platt, T., & Sathyendranath, S. (1997). Estimation of the photosynthetic action spectrum: implication for primary production models. Oceanogr Lit Rev, 44, 207–223.

    Google Scholar 

  • Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30, 673–690. doi:10.1016/j.biotechadv.2011.11.008.

    Article  Google Scholar 

  • Langley, N., Harrison, S. T. L., & van Hille, R. P. (2012). The effect of CO2 availability on the growth of Chlorella vulgaris. Biochemical Engineering Journal, 68, 70–75. doi:10.1016/j.bej.2012.-07.013.

    Article  Google Scholar 

  • Lardon, L., Hélias, A., Sialve, B., et al. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43, 6475–6481.

    Article  Google Scholar 

  • Li, J., Xu, N. S., & Su, W. W. (2003). Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal, 14, 51–65. doi:10.1016/S1369-703X(02)00135-3.

    Article  Google Scholar 

  • Liu, X., Clarens, A. F., & Colosi, L. M. (2012). Algae biodiesel has potential despite inconclusive results to date. Bioresource Technology, 104, 803–806. doi:10.1016/j.biortech.2011.10.077.

    Article  Google Scholar 

  • Lundquist, T., Woertz, I., Quinn, N., & Benemann, J. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosci Inst, 1, 1–178.

    Google Scholar 

  • MacIntyre, H., & Kana, T. (2002). Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology, 38, 17–38.

    Article  Google Scholar 

  • Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14, 217–232. doi:10.1016/j.rser.2009.07.020.

    Google Scholar 

  • Michel, H. (2012). Editorial: The nonsense of biofuels. Angewandte Chemie (International ed. in English), 51, 2516–2518. doi:10.1002/anie.201200218.

    Article  Google Scholar 

  • Mirón, A. S., Garcı́a, M. C. C, Gómez, A. C., et al. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297. doi:10.1016/S1369-703X(03)00072-X.

    Google Scholar 

  • Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  • Morel, A. (1978). Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Research, 25, 673–688.

    Article  Google Scholar 

  • Nagarajan, S., Chou, S. K., Cao, S., et al. (2013). An updated comprehensive techno-economic analysis of algae biodiesel. Bioresource Technology, 145, 150–156. doi:10.1016/j.biortech.2012.11.108.

    Article  Google Scholar 

  • NASA. (2013). Surface meteorology and Solar Energy (SSE) Release 6.0 Methodology.

    Google Scholar 

  • Norsker, N.-H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production–a close look at the economics. Biotechnology Advances, 29, 24–27. doi:10.1016/j.biotechadv.2010.08.005.

    Article  Google Scholar 

  • Oswald, W. J. (1988). Micro-algae and waste-water treatment. In M. Borowitzka & L. Borowitzka (Eds.), Microalgal Biotechnol (pp. 305–328). Cambridge: Cambridge University Press.

    Google Scholar 

  • Park, J. B. K., Craggs, R. J., Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42. doi:10.1016/j.biortech.2010.06.158.

    Google Scholar 

  • Pate, R., Klise, G., & Wu, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88, 3377–3388. doi:10.1016/j.apenergy.2011.04.023.

    Article  Google Scholar 

  • Peccia, J., Haznedaroglu, B., Gutierrez, J., & Zimmerman, J. B. (2013). Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends in Biotechnology, 31, 134–138. doi:10.1016/j.tibtech.2013.01.010.

    Article  Google Scholar 

  • Pilon, L., Berberoğlu, H., & Kandilian, R. (2011). Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. J Quant Spectrosc Radiat Transf, 112, 2639–2660. doi:10.1016/j.jqsrt.2011.07.004.

    Article  Google Scholar 

  • Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25. doi:10.1016/j.biortech.2010.06.035.

    Article  Google Scholar 

  • Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467. doi:10.1016/j.apenergy.2012.10.004.

    Article  Google Scholar 

  • RETScreen International. (2005). Clean energy project analysis.

    Google Scholar 

  • Richardson, J. W., Johnson, M. D., & Outlaw, J. L. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res, 1, 93–100. doi:10.1016/j.algal.2012.04.001.

    Article  Google Scholar 

  • Richardson, J. W., Johnson, M. D., Zhang, X., et al. (2014). A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res, 4, 96–104. doi:10.1016/j.algal.2013.12.003.

    Article  Google Scholar 

  • Rincón, L. E., Jaramillo, J. J., Cardona, C. A. (2014). Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renewable Energy 69,479–487. doi:10.1016/j.renene.2014.03.058.

    Google Scholar 

  • Rosenberg, J. N., Oyler, G. A., Wilkinson, L., Betenbaugh, M. J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology 19, 430–436. doi:10.1016/j.copbio.2008.07.008.

    Google Scholar 

  • Sander, K., & Murthy, G. (2010). Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assessment, 2008, 704–714. doi:10.1007/s11367-010-0194-1.

    Article  Google Scholar 

  • Savile, C. K., & Lalonde, J. J. (2011). Biotechnology for the acceleration of carbon dioxide capture and sequestration. Current Opinion in Biotechnology, 22, 818–823. doi:10.1016/j.copbio.2011.06.006.

    Article  Google Scholar 

  • Sheets, J. P., Ge, X., Park, S. Y., & Li, Y. (2014). Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresource Technology, 152, 154–161. doi:10.1016/j.biortech.2013.10.115.

    Article  Google Scholar 

  • Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510. doi:10.1063/1.1736034.

    Article  Google Scholar 

  • Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416. doi:10.1016/j.biotechadv.2009.03.001.

    Article  Google Scholar 

  • Sims, R. E. H., Mabee, W., Saddler, J. N., Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580. doi:10.1016/j.biortech.2009.11.046.

    Google Scholar 

  • Sing, S. F., Isdepsky, A., Borowitzka, M. A., & Lewis, D. M. (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresour Technol 161, 47–54. doi:10.1016/j.biortech.2014.03.010.

    Google Scholar 

  • Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102, 26–34. doi:10.1016/j.biortech.2010.06.057.

    Article  Google Scholar 

  • Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38. doi:10.1016/j.biombioe.2012.12.019.

    Article  Google Scholar 

  • Sousa, C. E. (2013). Oxygen accumulation in photobioreactors. The Netherland: Wageningen University.

    Google Scholar 

  • Stephenson, A., Kazamia, E., Dennis, J., et al. (2010). Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy & Fuels, 24, 4062–4077. doi:10.1021/ef1003123.

    Article  Google Scholar 

  • Sun, A., Davis, R., Starbuck, M., et al. (2011). Comparative cost analysis of algal oil production for biofuels. Energy, 36, 5169–5179. doi:10.1016/j.energy.2011.06.020.

    Article  Google Scholar 

  • Takeshita, T. (2011). Competitiveness, role, and impact of microalgal biodiesel in the global energy future. Applied Energy, 88, 3481–3491. doi:10.1016/j.apenergy.2011.02.009.

    Article  Google Scholar 

  • Talling, J. (1957) Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytologist 29–50.

    Google Scholar 

  • U.S. Energy Information Administration. (2014). How much energy is consumed in the world by each sector? http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=1. Accessed November 26, 2014.

  • Valdez, P. J., Nelson, M. C., Wang, H. Y., et al. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331. doi:10.1016/j.biombioe.2012.08.009.

    Article  Google Scholar 

  • Walker, D. A. (2009). Biofuels, facts, fantasy, and feasibility. Journal of Applied Phycology, 21, 509–517. doi:10.1007/s10811-009-9446-5.

    Article  Google Scholar 

  • Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: A review. Algal Res, 5, 204–214. doi:10.1016/j.algal.2014.02.001.

    Article  Google Scholar 

  • Wijffels, R. H., Barbosa, M. J. (2010) An outlook on microalgal biofuels. Science (80-) 329,796–769. doi:10.1126/science.1189003.

    Google Scholar 

  • Wijffels, R. R. H., Barbosa, M. J., & Eppink, M. H. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod Biorefining, 4, 287–295. doi:10.1002/bbb.

    Article  Google Scholar 

  • Williams, P. J. L. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, 554. doi:10.1039/b924978h.

    Article  Google Scholar 

  • Yang, J., Xu, M., Zhang, X., et al. (2011). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 102, 159–165. doi:10.1016/j.biortech.2010.07.017.

    Article  Google Scholar 

  • Zhang, Y.-H. P. (2011). What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochemistry, 46, 2091–2110. doi:10.1016/j.procbio.2011.08.005.

    Article  Google Scholar 

  • Zhu, X.-G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19, 153–159. doi:10.1016/j.copbio.2008.02.004.

    Article  Google Scholar 

  • Zilberman, D., Hochman, G., Rajagopal, D., et al. (2012). The Impact of Biofuels on Commodity Food Prices: Assessment of Findings. American Journal of Agricultural Economics, 95, 275–281. doi:10.1093/ajae/aas037.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan T.L. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Louw, T.M., Griffiths, M.J., Jones, S.M., Harrison, S.T. (2016). Techno-economics of Algal Biodiesel. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics